
Repast Simphony Database Outputter Plugin -

Documentation

Sascha Holzhauer, Center for Environmental Systems Research

October 15, 2010

1 Introduction

This documentation version is related to the plugin version 0.8. The database
outputter works analogous to a file outputter extending log4j’s JDBCAppender.
Like the file outputter, the database outputter is configured via a 2-step wizard
reusing/extending the file outputter and JDBC freezedryer wizards. The code
should integrate well into simphony as a plugin.

The performance of writing to a DB compared to a file is addressed by
adding the option to cache a certain number of SQL statements and execute
these at once. This might reduce the additional time to a negligible amount.
The advantage is to directly put data in the database without getting confused
about numerous files somewhere on the hard disk.

Features include:

• Caching of a definable number of outputs before SQL execution

• Configuration via 2-step wizard

– Auto-completion for URL and driver in database properties wizard
step

– Ability to test MySQL connection

– Choose whether to store login information or to be prompted

• Integrates well in Repast Simphony as plugin folder

• Creates MySQL table if it does not exist

2 Installation

Just extract the zip file into your eclipse installation folder. The result should be
a new folder called repast.simphony.data.db 1.2.0 within the plugin folder.

3 Setting up a Database Outputter Action

A Database outputter action is configured similar to a file outputter action.
After you configured one or more data sets, in the scenario tree, right-click on
“Outputters” and choose “Add DB Outputter”. The wizard’s first step page
(figure 1) appears:

1



Figure 1: Wizard Step 1

• Data Properties

– Name: Choose an arbitrary name for the outputter action that iten-
tifies the outputter in the sceanrio tree.

– Data Set ID: Use the drop-down menu to choose a previously con-
figured data set.

• Table Columns

– Add run ID: This is important for batch runs. In case it is activated
the plugin adds a column “runID” to each data row. The highest
runID will be queried from the table and increased. In case of a new
table it start with 1.

– Move the columns that shall be stored in DB to the left.

• Data Base Properties

– Table name: Type in the name of the table the data shall be stored
in. NOTE: If the table does not exist, the plugin tries to create a
new table.

• Caching Settings

2



– Specify the number of outputs that are cached before the data is sent
to the database. This can save an enormous amount of time since a
single database query could be very time consuming. Every object
per tick counts. I.e., if the data set is defined to gather data from
5 agents every second tick, data will be passed to the database after
20 ticks when the number of outputs to cache is 50. Note that the
interval of data storage is defined during the configuration of the data
sets.

Figure 2: Wizard Step 2

The second wizard step (figure 2) deals with database connection properties:

• Database Connection Properties

– URL: State the URL of the database you want to connect to, e.g.
jdbc:mysql://mysql:3306/simulations. This text field features
auto completion.

– Driver: Specify the JDBC driver class according to your database,
for instance com.mysql.jdbc.Driver. Make sure that the driver is
available at the classpath. The MySQL Connector-J library contain-
ing the driver may be downloaded from

3



http://www.mysql.com/downloads/connector/j/. This text field
features auto completion.

• Database User Properties

– User: The username to connect with.

– Password: Specify the password to log on at the database if there
are no security concerns since passwords are stored in clear text in the
outputter deciption XML file within the model configuration folder
(*.rs). If there are concers, uncheck to following box.

– Store Login Details: If it is checked username and password
will be stored in clear text to the configuration file. If the box is
unchecked, input fields for username and password are disabled. Fur-
thermore, the “Test DB Connection”-Button is diabled since it is not
possible to check the connection without username and password.
However, it is possible to check the box, fill in username and pass-
word, check the connection, and uncheck the box to prevent storing
login data. When no username and password are given, the plugin
prompts for login data when the simulations is initialised. Then, also
a connection test is performed (figure 3).

– Test DB Connection-Button: Press the button to test a con-
nection to the MySQL-Database with given parameters. If the test
fails, a dialog (figure 3) appears and gives the opportunity to correct
the data. If the test passes, the newly entered data is passed to the
second wizard step.

Figure 3: Wizard Step 2 Communication Settings

4 Implementation

4.1 DefaultDBOutputter

DefaultDBOutputter. CachedJdbcAppender extends JDBCAppender and uses
most of the functionality. To enable chaching, DefaultDBOutputter. CachedJdbcAppender

4

http://www.mysql.com/downloads/connector/j/


overwrites JDBCAppender#execute() and stores all sql statements into a buffer
until the limit is reached. Furthermore, it adds the column definitions as the first
part of SQL statement. To flush the buffer on close(), DefaultDBOutputter.
CachedJdbcAppender also overwrites JDBCAppender#close() and directly calls
JDBCAppenderexecute() to by-pass caching.

Overwriting JDBCAppender#getLogStatement() is used to generate the SQL
peace for every column defined in the DbOutputterDescriptor. CachedJdbcAppender

and also adds the runID if activated.
To ensure all cache is sent to the database, the DbOutputterDescriptor.

CachedJdbcAppender’s close() method is scheduled at the last tick with pri-
ority ScheduleParameters. LAST PRIORITY. Otherwise, close() is not called
before the simualtion is reset, and in case the user closes the application without
resetting the cached data is missed.

4.2 Error Handling

The plugin does not throw SQLExceptions in order not to interrupt simulations
because of output errors. Instead, a ERROR-Logging to the Repast Simphony
Message Center is triggered.

5 Things to Do

• Adjust dialog dimensions

• Check for column types using DbOutputterDescriptor.CachedJdbcAppender#

doesTableDefinitionExist(String tableName, Map<String, Object>

cols). Since the DataGathererDescriptor does not contain any type in-
formation this is not straight forward.

• Create additional table columns if requiered

• Handle more objects (e.g. arrays) to log

• Check for valid characters in table name.

6 Contact

Any suggestions and bug reports are appreciated. Please, send an eMail to
holzhauer@usf.uni-kassel.de.

5


	Introduction
	Installation
	Setting up a Database Outputter Action
	Implementation
	DefaultDBOutputter
	Error Handling

	Things to Do
	Contact

