Hi.'_.‘stnne
Software

Hillstone Software

Dublin 22, Republic of Ireland
www.hillstone-software.com

info@bhillstone-software.com

Tel. +353 87 988 1568

HsTCPIPv4 Programming Manual

HsTCPIPv4 version 1.0
Document ver 1.0

26 August 2009
HSTCPIPV4 Programming ManUALoooiiiiiiiiieeee ettt eeeeera s 1
HSTCPIPVA VEISION L.0..cciiiiiiiiiiiiiiiiiiiiiii et 1
DOCUMENTVEE 1.0 ceiiiiiiiii ettt e e e et e e e e e e e r e e e e e eenns 1
26 AUGUSE 2009uutetttttetteeeeeeeeeeeee e ee bbb E e E R E e E 1 e E e b E 1 E 1 e e e e e e e E e e e e e e b e nnrnnrnre 1
L INEFOAUCTION L. 5
2 HSTCPIPVA APl ..o 6
2.1 Overall SOftware ArChItECIUIEuuuuuuueiririiiiieiiiieieebe bbb rrerrrennne 6
2.2 APPHCALION LAYEE AP ...ttt e e 7
221 HSTID o 7
2211 HSTIID OVEIVIEW. ...ttt e et e e e e eenaaanas 7
2212 HSTIID AP e 7
2.2.1.2. 1 HSTHPINIE ceeeiiiiiiiiieeieeeeeee e 7
2.2.1.2.2 HSTIIPDESIIOY «.eeeetteee ettt ettt e e e e e ettt e e e e e e eeeananns 9
2.2.1.2.3 HSTIPTIANSIEI .ot 9
2.2.1.2.4 HSTIPADOI. ... e 12
2.2.1.25 HSTHPTIMEIEXPIrEd ... oo 12
2.2.1.2.6 HSTIPSIAMSEIVEL ...t eeeeaanas 13
2.2.1.27 HSTIPSErverStantRECEIVEoii i 15
2.2.1.2.8 HSTIPSErverStanSendooi i 17
2.2.1.2.9 HSTIPEITSIE . ettt e e e e et e e e e eeeaaanas 18
2.2.1.2.10 HSTHPREJECIRG: cceevtuniieeeeeeeitite ettt eeeeeeeaaans 19
2.2.1.3 HSTTtp APPlICation NOEScooiiiiiii e 20
2.2.1.3.1 Model Of OPEIratioN.......ccciiiiiiiiiiie ettt eeeeeeeaaans 20
2.2.1.3.2 Sending File CoNSIAeratioNS...........cceuuuuuuiiiieaiiieiiiiaa e eeeiaanns 20
2.2.1.3.3 Receiving File ConsSIderationsc.uuuuiiiiiiiiiiiiiii e 20
222 HSED 21
2221 HSFED OVEIVIEW. ...ttt et e e e e e eebaanas 21
2222 HSFEP AP 21
2.2.2.2. 1 HSFEPINIT coiiiiiiiiiiiiieeee 21
2.2.2.2.2 HSFIPCIEANUDP ...ttt e e e 26
2.2.2.2.3 HSFPTICK. ceiiiiiiiiiiiiiiiii 26
2.2.2.2.4 HSFIPCHCONNECTun i eaaeaans 27
2.2.2.25 HSFLPCHDISCONNECT.cceiiiiiiiiiii et e e eeeeaanns 29
2.2.2.2.6 HSFPCHCNDIN ...cciiiiiiiiiiiiiiiiiii 29
2.2.2.27 HSFIPCHCIEAEDIN ... e eeeeaaaas 30
2.2.2.2.8 HSFPCHREMOVEDII.cciiiiiiiiiie e eeeeaans 30
2.2.2.2.9 HSFPCHLISE c.eeviiiiiiiiiiiiiiiiiei 31
2.2.2.2.10 HSFIPCHGEIFIIE.....cciiiiiiiiiiiiiiiii 32
2.2.2.2.11 HSFPCISENFIlEcovviiiiiiiiiiiiii 33

ftp://ftp...7
ftp://ftp...21
http://www.hillstone-software.com
mailto:info@hillstone-software.com

2.2.2.2.12 HSFPCIDEIELEFIIEo eeieeeeeieie e 33

2.2.2.2.13 HSFIPCHADOIT ...cooiiiiiiiiiiiiiii 34
2.2.2.2.14 HSFPCIRENAME. ... eeeeeaanas 35
2.2.2.2.15 HSFtpCliGetCUIrentDIFECIONY.......cceiiieeiiiiiie et 35
2.2.2.2.16 HSFIPCIINOOP ..ceevitiiiieeei et e e e eeeeaanas 36
2.2.2.2.17 HSFPSEICONTIG. . ettt 36
2.2.2.2.18 HSFIPGEISTALS ...cvuiiiiiiieei ettt ettt e e e e et eeaa e 37
2223 HS FTP Client Module to User Event Callback and Events............................ 38
2.2.2.3.1 Event Callback ProtOtyPeuiiieeiiieiiiee e 38
2224 EVBNES. e 38
2225 INFOrMAtioN COUEScoeiiiiiiiiiiie 43
2.2.2.6 Recursive Folder OPerationsoooiieiiiiuiiiieeeeeeeeiiie e 44
2.2.2.6.1 APLFUNCHONS.....cciiiiiiiiiiiiiiiiiiii e 44
2.2.2.6.1.1 HSFPRECUISINIT....ceeiiiiiiieeee e 44
2.2.2.6.1.2 HSFPRECUIrSECIEANUDciiiiiiiiiiie e 45
2.2.2.6.1.3 HSFPRECUISTICK ...cevtveiiieeeiieeeiite e 45
2.2.2.6.1.4 HsFtpRecursDownloadFolder ... 46
2.2.2.6.1.5 HsFtpRecursUploadFolder. ... 46
2.2.2.6.1.6 HsFtpRecursDeleteFOolder ..o a7
2.2.2.6.2 Recursive Operations Callback and EVentscccovviviiiiiiiiieeiieeeinnnnn, 48
2.2.2.6.2.1 Event Callback Prototype.............coiiiiiiiiiiiiiiieeiieeeiii e 48
2.2.2.6.2.2 EVENIS ..ottt 48
2.2.2.6.3 Recursive Operations Module Return Codes............ooeeviieiiiiiiniieeniieeiiinnnn. 50
2.2.3 [S0 1 11 {0 PP TUPPTTRPPPN 51
2231 OVEIWIBW ...ttt e e e e e e nneees 51
2232 HSSIMEP AP i 51
2.2.3.2. 1 HSSMIPINIT ... 51
2.2.3.2.2 HSSMIPDESIIOY ...ttt ettt e et eeaa e 54
2.2.3.2.3 HSSMIPTICK .. 54
2.2.3.2.4 HSSMIPSENAMAIloiiiiiiiiiii e 55
2.2.3.25 HSSMPLADOIMAI! ... oo 57
2233 HS SMTP to User Event Callback and EVentsccccccccevviiiiiiin, 57
2.2.3.3.1 Event Callback ProtOtyPeiiieiiiieiiiiieeeee e 57
2.2.3.3.2 EVENECOUES ...ccoiiiiiiiiiiiiiiieieeeeeee e 58
224 HS P O . 60
2241 OV BIVIBW ...ttt e e e e e nn e 60
2242 HSPOP3 AP i 60
2.2.4.2. 1 HSPOPSINIT cceiiiiiiiiiiiiiiiiiiieie e 60
2.2.4.2.1.1 Initialisation Structure Definition (hs_pop3_api_t).....cccccevveeviiiiiiinnnnnnn. 60
2.2.4.2.2 HSPOP3DESIIOY ...euiiiiiieeeeitei ettt ettt e e e e 61
2.2.4.2.3 HSPOP3GEIMAIl.....uuuiiiiiiiii e 62
2.2.4.2.4 HSPOP3ADOI. ...t 63
22425 HSPOP3GEIEITSII ...ttt ettt e e et e e e e 63
2243 HS POP3 to USER Event Callback and EVENLScccccovvvviiiiiiiii, 64
2.24.3.1 Event Callback ProtOtyPeuiiioiiiiiiiiii e 64
2.2.4.3.2 EVENES. ..ottt 64
2.2.4.3.3 Message structure (hS_Pop3_ MSQ_t)....uuuiiiiiiiiiiiiiiiiaie e 67
225 H SN e 68
2251 OV BIVIBW ...ttt bbb e e e e nnnee 68
2252 HSINEP AP i 68
2.2.5.2. 1 HSNEPINIT . ceiiiiiiiiiiiiiiiiiee 68
2.2.5.2.1.1 Initialisation Structure Definition (hs_ntp_api_t).....cccccoeeeiiiiiiiiiiiiinnnnn. 69
2.2.5.2.2 HSNIPDESIIOYcuuiiiiii ettt ettt e e e e et eaa e 69
2.2.5.2.3 HSNIPGEIEITSI e 70
2.25.2.4 HSNIPGELTIME ..ottt e et e e e e eeeeaanns 70

2.25.3 HS NTP to USER Event Callback and EVENtS........ccooeevviiiiiiiiiiieceeeeeeeeeen, 71

2.25.3.1 Event Callback ProtOtyPeiiieiiiiiiiiiia e 71

2.2.5.3.2 EVENES.cciiiiiiiiiiiiiiieeeee 71
2.2.5.3.3 NTP time reply structure (hs_ntp_info_t)........cooomiiiiiiiiiiii e, 72
2.2.6 HS NS e 73
2.26.1 OV BIVIBW ...ttt e b e n e e e 73
2.2.6.2 HSDINS AP .o 73
2.2.6.2.1 HSDNSINIT ccciiiiiiiiiiiiiiiii 73
2.2.6.2.2 HSDNSCIEANUP ..covttiii et e e eeaaaaans 74
2.2.6.2.3 HSDNSSEtPAramsS.........ccoiiiiiiiiiiie e 75
2.2.6.2.4 HsDNSGELIPDYNAME ..o 76
2.2.7 [51 1 [of o PRSP PUPPPPPPIN 78
2271 OV BIVIBW ..ttt n b n e e 78
2272 HSDINCP AP i 78
2.2.7.2. 1 HSDRNCPINIT . 78
2.2.7.2.2 HSDNCPCIEANUP ...t 80
2.2.7.2.3 HSDNCPRENEW ...ttt eeeeaaans 80
2.27.2.4 HSDNCPREICASEuniieeiieeee e 81
2.2.7.3 HsDhcp Events passed to event callback ..., 81
2.3 SESSION LAYl AP ...t aaaaeee 83
231 HS S OCK oo 83
2311 OV BIVIBW ..ttt e e e e nnrne 83
23.1.2 HSSOCK AP ..ot 83
2.3.1.2. 1 HSSOCKINIT...cciiiiiiiiiiiiiiiiiiiiiiiite e 83
2.3.1.2.2 HSSOCKCIEANUP ...ttt e eeeeaaans 86
2.3.1.2.3 HSSOCKUAPOPENeniiieiiieiiiiee et eeaeaans 86
2.3.1.2.4 HSSOCKTCPCONNECT. ... ceiiieiiiiii ettt e e eeeeaanns 88
2.3.1.25 HSSOCKTCPLISIEN ...t eeeeaaans 89
2.3.1.2.6 HSSOCKCIOSEcoeviiiiiiiiiiiiiiiiiiiiiiee 90
2.3.1.2.7 HSSOCKUAPSENALO ... oiiiiiiiiiiii e 90
2.3.1.2.8 HSSOCKTCPSENA ...eeeiiieiiieeeie e 91
2.3.1.2.9 HSSOCKINEIAANoiiiiiiiiiiiiiiiiiiiii 92
2.3.1.2.10 HSSOCKINENLOAceiiiiiiiiiiiiiiiiiiiiiiii 92
2.3.1.2.11 HSSOCKGEIRCSIING ... eeeiieiiiiiie ettt e e eeeeaanns 93
23.1.3 HSSOCK EVENES....coiiiiiiiiiiiiiiiii 93
2314 ICMP Event Callback EVENES..........ccoovviiiiiiiiii 95
2.4 TranspOrt LAYEr APL..... . et 96
241 [] o] TP UPPRTRPPPN 96
2411 OV BIVIBW ...ttt e e e e b e n e 96
24.1.2 HSTCP AP 96
2.4.1.2. 1 HSTCOPINIT. ..t e et a e e eeeaaaaas 96
2.4.1.2.2 HSTCPSEIPAramsS.....couuiiiiiiii e 98
2.4.1.2.3 HSTCPCIEANUP....coiiiiiii et e e e eeeeaaans 98
24124 HSTCPCONNECT ...cueniiiiit ettt ettt e e e e et e e et e e e ab e aaes 99
2.4.1.2.5 HSTCPLISIEN ...ttt e e e et eeaaeeees 100
2.4.1.2.6 HSTCPBINASESSIONuuiiiiiiiiiiiiie ettt aaeeeees 100
2.4.1.27 HSTCPSIOPLISIEN ..ttt eaeeeees 101
2.4.1.2.8 HSTCPCIOSE ...ttt e e et e e e aaaeees 101
2.4.1.2.9 HSTCPSENA ... e e et aaaaeees 102
2.4.1.2.10 HSTCPRECEIVEPACKEL......cccieiiiiiiiiie e 102
2413 HSTCP EVENLS. ...t e s 103
24.2 HSUOD e 104
2421 OV BIVIBW ...ttt b e nn e e 104
2422 HSUD AP .o 104
24221 HSUAPINIT...ooiiiiiiiiiiiii 104
2.4.2.2.2 HSUAPSEIPAramMSo it e e eeees 105

2.4.2.2.3 HSUAPCIEANUDP ..ottt et aaeeeees 105

2.4.2.2.4 HSUAPSENAPACKEL........ccoiiiiiiiiii e 106
2.4.2.25 HsSUAPRECEIVEPACKELcoviiiiiiiiiiie e 106

2.5 NEtWOIrK Layer AP ... ettt e e e e et aeaaaeeees 108
251 H S e 108
2511 OV BIVIBW ...ttt bbb e e e nnene 108
2512 HSIP APl oo 108
2.5.1.2. 1 HSIPINIT coeiiiiiiiiiiiii 108
2.5.1.2.2 HSIPSEtPAramS.o 110
2.5.1.2.3 HSIPSHULAOWN......cooiiiiiiiiiiiiiiiiiiiii 111
2.5.1.2.4 HSIPSENUPACKELuiiiiiiiieiiie et 111
2.5.1.2.5 HSIPRECEIVEPACKET.......ccoiiiiiiiiiiie et 111
2.5.1.2.6 HSIPCRECKSUMLGuiiiiiiieiiiie et eaeeeees 112
252 [5] (01 1 0] o JR TP PTR PP 114
2521 OV BIVIBW ..ttt bbb e r e nnr e 114
2522 HSICMP AP 114
2.5.2.2. 1 HSICMPINIT.... et a e 114
2.5.2.2.2 HSICMPCIEANUP ...outiiii et e e et eaaeeees 116
2.5.2.2.3 HSICMPPING ... 116
2.5.2.2.4 HSICMPCANCEIPING. ... ittt aaaeeees 116
2.5.2.25 HSICMPRECEIVEPACKELccoiiiiiiiie e 117
2523 HSICMP EVENES ... e 118
253 H S AT e 119
2531 OV BIVIBW ..ttt bbb e r e nnr e 119
2532 HSAID AP i 119
2.5.3.2. 1 HSAIPINIT. .ottt 119
2.5.3.2.2 HSAIPSEIPAIAMS ...t 120
2.5.3.2.3 HSAIPRESOIVEAAAIESS ..ot 120
2.5.3.2.4 HsArpReceivedEthPacKet ..o 121

1 Introduction

HSTCPIPv4 is a suite ANSI C source code libraries which fully implement TCP IP
protocol. HSTCPIPv4 as a whole or any of its included components can be used in an
embedded system or on PC.

HSTCPIPv4 is supplied with full ANSI C source code and binaries.

HSTCPIPv4 has been tested on both Little-endian (Intel x86) and Big-endian
(Freescale / Motorola PowerQUICC) memory architectures.

HsSTCPIPv4 includes the following components / protocols:

* ARP « TFTP
= ICMP « FTP

= Ip * NTP / SNTP
* UDP * POP3

= TCP * SMTP

= Sample applications:
ICMP Ping, NTP client,

DHCP / BOOTP TFTP server and Client,
FTP Client, POP3 Client,
SMTP Client

= DNS

2 HsTCPIPv4 API

2.1 Overall Software Architecture

HsSmtpDemo HsPop3Demo HsFtpDemo HsTftpDemo HsNtpDemo
A A
HsPingDemo
y A
HsSmtp HsPop3 HsFtp HsTftp HsNtp

— Y

HsSock

A HsTcp HsUdp

Ethernet packet driver (not included)

HSTCPIPv4 is designed in a modular way, you can use only the specific modules you need for
your application.

At the top level are sample applications supplied with HSTCPIPv4 protocol stack: SMTP client,
POP3 client, FTP client, TFTP server and client, NTP client and ICMP Ping.

These applications use their respective library part of HSTCPIPv4: HsSmtp, HsPop3, HsFtp,
HsTftp, HsNtp, Hslcmp

The above protocol modules interface to a common socket layer HsSock. HsSock library is
talking to TCP (HsTcp) and UDP (HsUdp) modules

Both TCP and UDP modules and ICMP module interface to IP module (Hslp)
Hslp interfaces to ARP (HsArp) module. Both ARP and IP libraries interface to user supplied
Ethernet packet driver.

HsTCPIPv4 protocol stack parameter configuration is done through HsSock module either using
static parameters (IP address, Router IP address, subnet mask, DNS server IP address) or using
dynamic configuration via HsDhcp library

All protocol modules use HsDns API if it is necessary to resolve target domain name to an IP
address

2.2 Application Layer API
2.2.1 HsTftp

2.2.1.1 HsTftp Overview

HsTftp module implements Trivial File Transfer Protocol (TFTP) client and server side as per
RFC 1350.

HS TFTP also implements RFC 1782 (TFTP Option Extension). The only supported TFTP option
is block size as defined in RFC 1783 (TFTP Blocksize Option).

HS TFTP implements concurrent TFTP server and TFTP client operation.

2.2.1.2 HsTftp API

2.2.1.2.1 HsTftplnit

Declaration:
extern int HsTftplnit(tftp_init_t *init);

Summary:
This function initialises HS TFTP Library and must be called first before any other functions are

called. Init structure contains function pointers which must be initialised with function addresses in
application layer. HS TFTP module will call these functions when it needs to manage timers and
memory.

Parameters:
hs_tftp_init_t *init - Pointer to initialisation structure, defined as follows:

parameter Description
hs_tftp_get_buf_t *get_tx_buffer Prototype
hs_tftp_get_buf_t *get_rx_buffer unsigned char *hs_tftp_get_buf_t(long handle, unsigned int

*length, int *cmd);

Parameters:

handle — application (user) layer context handle

*length — Length of memory block. HS TFTP will pass number of
bytes requested here. The user code sets the value to the actual
number of bytes granted. While most of the time number of
requested bytes equals number of given bytes, for example the
last block may be shorter due to end of file, so the given length
is less than requested.

*cmd - this is intended for exchange of additional information or
commands between user code and HS TFTP module — currently
not used.

Return: pointer to memory buffer in user code or NULL if no
memory available or nothing to give (end of transmission or end
of file)

Description: These functions shall be called from HS TFTP
module when it needs to send next block of data (on reception of

ACK from remote peer) or when data has been successfully
received and now needs to be copied to user space from HS
TFTP space.

hs_tftp_start_timer_t *start_timer_fn;

Prototype:
long hs_tftp_start_timer_t(long handle, unsigned long secs);

Parameters:
handle — TFTP module context handle
secs — number of seconds to timeout after.

Return:
Timer handle. Currently the same as application (user) context
handle

Description:
This function in user code will be called from Hs TFTP code to
start a timer with a specified number of seconds.

hs_tftp_stop_timer_t *stop_timer_fn

Prototype:
void hs_tftp_stop_timer_t(long handle);

Parameters:
Handle — timer handle

Return:
No return

Description:
This function will be used by HS TFTP module to stop (destroy)
a timer previously started with start_timer_fn.

unsigned short int max_blksize

Maximum possible TFTP data block size, O=use default,
otherwise 8 to 65464 is the valid range. This is a global setting
which will affect all TFTP sessions. If TFTP blocksize option
negotiation is used, HS TFTP will not negotiate or use blocksize
above this value. This setting also affects the size of allocated
buffer for receiving data from socket layer.

Return values:

Value

Description

HS_TFTP_RC_OK

Success

HS TFTP_RC_INIT

HS TFTP already initialised

HS_TFTP_RC_INVALID PAR

Invalid parameter

HS_TFTP_RC_NO_MEM

No free contexts or not enough memory for HS TFTP
structures

Sample usage:

/*

* initiase TFTP library

*/

int init_tftp_library(void)

{
tftp_init_t init = {O};
int rc;

init.get_tx_buffer = tftp_get_buf_tx_cb;

init.get_rx_buffer = tftp_get_buf_rx_cb;

init.start_timer_fn = tftp_start_timer_cb;
init.stop_timer_fn = hs_tftp_stop_timer_cb;
init. max_blksize = 65464, /I max blkoption option size value from RFC 2348

rc = HsTftplnit(&init);

if (rc == HS_TFTP_RC_OK)
tftp_initialised = 1;

return rc;

2.2.1.2.2 HsTftpDestroy

Declaration:
extern void HsTftpDestroy(void);

Summary:
De-allocates resources and closes HS TFTP services.

Parameters:

None

Return values:

None

Sample usage:

HsTftpDestroy();

2.2.1.2.3 HsTftpTransfer

Declaration:

extern

int HsTftpTransfer(int operation,
unsigned long dest_ip,
unsigned char *filename,
hs_tftp_ev_fn_t *callback_fn,
unsigned short tftp_port,
unsigned short int blocksize,
long *handle,
long user_handle);

Summary:

Use this function to initiate client mode file transfer, either a send file transfer or receive file
transfer. This function must be called after the library has been initialized with hsTftplnit

Parameters:

operation — integer operation code, one of the following:
TFTP_OP_SEND_FILE — Send file operation
TFTP_OP_GET_FILE — Receive file operation

dest_ip — destination IP address of TFTP server, (32 bit)

filename — pointer to null terminated string containing filename to send or receive

callback _fn — callback function to receive TFTP events related to this TFTP session or
the following prototype:

typedef long hs_tftp_ev_fn_t(long handle, int ev_code, long argl, long arg?2);

handle passed to the above function is the same user_handle passed to
HsTftpStartTransfer

ev_code TFTP event code, see table below.
tftp_port — destination server TFTP port (normally 69)

blocksize - 0=block size option not supported (default 512 bytes used)
otherwise blocksize to use in option negotiation, valid values 8 to 65464

handle - Connection handle returned after transfer initiated

user_handle — user context data to be stored in TFTP session context. This handle
gets passed to event callback function (see above)

Return values:

Value Description

HS TFTP_RC OK Success

HS TFTP_RC NO_FREE_CTX Maximum number of concurrent sessions reached,
cannot allocate new session

HS TFTP_RC INVALID PAR Invalid parameter

HS TFTP_RC UDP_SOCK OPEN Error opening UDP socket

HS TFTP_RC UDP_ SOCK SEND Error sending to UDP socket

TFTP session events:
The following table describes TFTP session events notified to the user via callback
function callback_fn:

Event code Description
HS TFTP_EV_ERR _TMOUT TFTP session closed due to timeout
Argl =0
Arg2 =0
HS TFTP_RX COMPLETE Receive file transfer complete
Argl =0
Arg2 =0
HS TFTP_EV ERR RXED TFTP error received from remote TFTP server, session

aborted.

Argl = integer error code as received from server
Arg2 = pointer to null terminated string describing
the error

HS TFTP_EV ERR OACK Session aborted. Invalid OACK (option ack) received

Sample usage:

rc = HsTftpTransfer(TFTP_OP_GET_FILE, dest_ip,
¤t_filenamel[i], hs_tftp_ev_handler, ip_port, blksize, &pCtx->tftp_handle, (long)pCtx);

/*
* Event calback from TFTP library
*/
long hs_tftp_ev_handler(long handle, int ev_code, long argl, long arg2)
{
unsigned char s[80] = {0};
int len;
unsigned char *errp = NULL;
server_conn_ctx_t *pCtx;
DWORD dwWritten;

if (Itftp_initialised)
return O;

pCtx = (server_conn_ctx_t *)handle;
if (IpCtx) return O;

switch (ev_code)

{

case HS_TFTP_EV_ERR_TMOUT:
write_event("Client session timeout");
hs_tftp_cleanup_ctx(pCtx);
break;

case HS_TFTP_RX_COMPLETE:
write_event("Client receive transfer complete");
if (pCtx->rxbuf_len > 0)
WriteFile(pCtx->hFile, pCtx->rxbuf, pCtx->rxbuf_len, &dwWritten, NULL);
hs_tftp_cleanup_ctx(pCtx);
break;

case HS_TFTP_EV_ERR_RXED:
errp = (unsigned char *)arg2;

len = strlen(errp);
if (len > ((sizeof s)-1))
{

len = ((sizeof s)-1);
}

memcpy(s, errp, len);

write_event(s);

hs_tftp_cleanup_ctx(pCtx);
break;

case HS_TFTP_EV_ERR_OACK:
write_event("Client session closed: invalid OACK rxed");
hs_tftp_cleanup_ctx(pCtx);
break;

}

return O;

}
2.2.1.2.4 HsTftpAbort

Declaration:
extern int HsTftpAbort(long handle);

Summary:
Abort current operation and cleanly disconnect remote end based on passed

connection handle. This function is going to send TFTP ERROR packet to remote end
with the string “Aborted by user” and cleanup local TFTP session context.

Parameters:
handle — TFTP session handle

Return values:

Value Description
HS_TFTP_RC_OK Success
HS_TFTP_RC_NOT_INIT HSTFTP is library not initialized
HS_TFTP_RC_INVALID PAR Invalid parameter (null handle)

Sample usage:

HsTftpAbort(pCtx->tftp_handle);

2.2.1.25 HsTftpTimerExpired

Declaration:
extern void HsTftpTimerExpired(long timer_handle);

Summary:
Function called from user code when timer previously started by HS TFTP has expired

Parameters:
timer_handle - timer handle

Return values:
None

Sample usage:

/*

* windows timer callback

*/

TIMERPROC TimerProc(HWND hwnd, UINT uMsg, UINT_PTR idEvent, DWORD
dwTime)

{
KillTimer(hwnd, idEvent);
HsTftpTimerExpired((long)idEvent);
return O;

¥

2.2.1.2.6 HsTftpStartServer

Declaration:

extern int HsTftpStartServer(
hs_tftp_srv_ev_fn_t *callback_fn,
unsigned short int blocksize,
unsigned short tftp_port);

Summary:
Starts server operation of HS TFTP module.

Parameters:

unsigned short int blocksize — controls the handling of blocksize option received in
WRQ and RRQ requests (file read and write requests) from clients. Set to O to not
support the blocksize option and always use default block size of 512 bytes. Set to
maximum supported block size in the range from 8 to 65464. Please note that this
value also cannot exceed the value of max_blksize set in init structure when
HsTftplnit was called. If client request contains TFTP blocksize option, the request
will be acknowledged by HS TFTP server with OACK packet containing either the
requested blocksize value or a lower value if blocksize parameter in this call is lower.

unsigned short tftp_port — UDP port number the HS TFTP module listens for incoming
TFTP client commands, recommended default value is 69.

hs_tftp_srv_ev_fn_t *callback_fn — function pointer to callback function in
application layer which receives events related to the status of the server operations:

typedef long hs_tftp_srv_ev_fn_t(long handle, int ev_code, long argl, long arg2);

handle — currently unused
ev_code — one of the following values:

HS_TFTP_EV_WRITE_REQ — write request received from remote TFTP client (client
wants to send file)

Argl — pointer to null terminated filename string

Arg2 — 32 bit remote IP address (address of TFTP client sending this request)

HS_TFTP_EV_READ_REQ - read request received from remote TFTP client (client
wants to get file)

Argl — pointer to null terminated filename string

Arg2 — 32 bit remote IP address (address of TFTP client sending this request)

Return values:

Value Description

HS TFTP_RC OK Success

HS TFTP_RC_UDP_SOCK_ OPEN UDP layer failed to open session on specified UDP
port

HS TFTP_RC INVALID PAR Invalid parameter

Sample usage:

/*
* Event calback from TFTP library (server mode)
*/

long hs_tftp_ev_server_handler(long handle, int ev_code, long argl, long arg2)

{
unsigned char *file;
if (Itftp_initialised)
return O;
if ('handle)
return O;
switch (ev_code)
{
case HS_TFTP_EV_WRITE_REQ:
file = (unsigned char *)arg1;
process_file_write_request(file, arg2);
break;
case HS_TFTP_EV_READ_REQ:
file = (unsigned char *)arg1l;
process_file_read_request(file, arg2);
break;
¥
return O;
¥

/* Start server mode */
void StartServer(void)

{

int rc;

if (Itftp_initialised)

{
rc = init_tftp_library();
if (rc 1= HS_TFTP_RC_OK)
{

printf("HSTFTP init failed. Error %d\n", rc);

return;

if (Iserver_started)

{
rc = HsTftpStartServer(hs_tftp_ev_server_handler, 65464, TFTP_PORT);
if (rc 1= HS_TFTP_RC_OK)
{
printf("Server failed to start. HS TFTP Error: %d\n", rc);
return;
¥
server_started = TRUE;
¥
else
{
printf("Server mode already running\n™);
return;
¥

testing_hs_tftp = 1;

printf("Server mode started OK\n");

2.2.1.2.7 HsTftpServerStartReceive

Declaration:

extern

int HsTftpServerStartReceive(
hs_tftp_ev_fn_t *callback_fn, /I event callback (used for indication of completion or error)
long *handle, /I Connection handle returned after transfer initiated
long user_handle); /I upper layer context handle

Summary:

Start receiving requested file from remote peer (in Server mode). This function is
called in response to HS_TFTP_EV_WRITE_REQ event, which occurs when a write
request for a file is received from remote TFTP client

Parameters:
hs_tftp_ev_fn_t *callback_fn — function pointer to a callback function in application
(user) layer code which receives notifications related to this transfer session.

typedef long hs_tftp_ev_fn_t(long handle, int ev_code, long argl, long arg2);
handle — application layer handle

ev_code — event, one of the following:

HS TFTP_EV_ERR_TMOUT — session timed out and closed
HS_TFTP_RX_COMPLETE — receive transfer completed successfully

Argl and arg2 are currently unused

long *handle — pointer to long variable to received TFTP module connection handle
after file transfer is initiated.

long user_handle — application layer context handle. This handle is saved into
corresponding TFTP session context and is returned unchanged as a parameter in
various notification callbacks from HS TFTP to application layer code.

Return values:

Value Description

HS_TFTP_RC_OK Success
HS_TFTP_RC_UDP_SOCK_OPEN UDP layer failed to open session
HS_TFTP_RC_INVALID_PAR Invalid parameter

Sample usage:

/* server mode - process file write request */
void process_file_write_request(unsigned char *filename, long arg2)
{ .

int rc;

unsigned char ipstr[20] = {0};

server_conn_ctx_t *pCtx;

HsSockInetNtoa(arg2, ipstr);
printf(“file write request from (%s) %s\n", ipstr, filename);

pCtx = tftp_alloc_srvconn_ctx();
if ('pCtx)
{

printf("rejected: no free contexts\n");
HsTftpRejectRq(HS_TFTP_EV_WRITE_REQ,
HS_TFTP_SERVER_ERR_USER, "no free contexts");

return;

}

pCtx->hFile = CreateFile(filename, /I file to open
GENERIC_WRITE, /I open for writing
0, /I no sharing
NULL, /I default security
OPEN_ALWAYS, /I overwrite existing file
FILE_ATTRIBUTE_NORMAL, /I normal file
NULL);

if (pCtx->hFile == INVALID_HANDLE_VALUE)
pCtx->hFile = NULL;

if ({pCtx->hFile)
printf("rejected: file open error\n™);
tftp_free_srvconn_ctx(pCtx);
/* Reject request */

HsTftpRejectRq(HS_TFTP_EV_WRITE_REQ, HS_TFTP_SERVER_ERR_FIO, NULL);
return;

}

pCtx->is_server_session = TRUE;
pCtx->is_send = FALSE;

tftp_add_srvconn(pCtx);

rc = HsTftpServerStartReceive(hs_tftp_server_ev_handler, &pCtx->tftp_handle, (long)pCtx);
if (rc 1= HS_TFTP_RC_OK)

printf("Server Start Receive failed RC (%u)\n", rc);

hs_tftp_cleanup_ctx(pCtx);
return;

}

printf("Server receive transfer started\n");

2.2.1.2.8 HsTftpServerStartSend

Declaration:
extern int HsTftpServerStartSend(

hs_tftp_ev_fn_t *callback_fn, /I event callback (used for infication of completion or error)
long *handle, /I Connection handle returned after transfer initiated
long user_handle); /I upper layer context handle

Summary:

Start sending requested file to remote peer (in Server mode). This function is called
in response to HS_TFTP_EV_READ_REQ event, which occurs when a read request for
a file is received from remote TFTP client

Parameters:
hs_tftp_ev_fn_t *callback_fn — function pointer to a callback function in application
(user) layer code which receives notifications related to this transfer session.

typedef long hs_tftp_ev_fn_t(long handle, int ev_code, long argl, long arg2);
handle — application layer handle

ev_code — event, one of the following:

HS TFTP_EV_ERR_TMOUT — session timed out and closed
HS_TFTP_RX_COMPLETE — receive transfer completed successfully

Argl and arg2 are currently unused

long *handle — pointer to long variable to received TFTP module connection handle
after file transfer is initiated.

long user_handle — application layer context handle. This handle is saved into
corresponding TFTP session context and is returned unchanged as a parameter in
various notification callbacks from HS TFTP to application layer code.

Return values:

Value Description

HS_TFTP_RC_OK Success
HS_TFTP_RC_UDP_SOCK_OPEN UDP layer failed to open session
HS_TFTP_RC_INVALID_PAR Invalid parameter

Sample usage:

[* server mode - process file read request */
void process_file_read_request(unsigned char *filename, long arg2)
{

int rc;

long fsize = 0;

unsigned char ipstr[20] = {0};

server_conn_ctx_t *pCtx;

HsSockInetNtoa(arg2, ipstr);
printf("file read request from (%s) %s\n", ipstr, filename);

pCtx = tftp_alloc_srvconn_ctx();
if (IpCtx)
{

printf("rejected: no free contexts\n");
HsTftpRejectRq(HS_TFTP_EV_READ_REQ,

HS_TFTP_SERVER_ERR_USER, "no free contexts");
return;

}

pCtx->hFile = CreateFile(filename, GENERIC_READ, FILE_SHARE_READ, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (pCtx->hFile == INVALID_HANDLE_VALUE)
pCtx->hFile = NULL;

fsize = (long)GetCompressedFileSize(flename, NULL);
if (\pCtx->hFile) || (Mfsize))
{

printf("rejected: file open error\n");

HsTftpRejectRq(HS_TFTP_EV_READ_REQ, HS_TFTP_SERVER_ERR_FNOTFOUND, NULL);
hs_tftp_cleanup_ctx(pCtx);

return;

}

pCtx->fblock = pCtx->rxbuf;

pCtx->is_server_session = TRUE;
pCtx->is_send = TRUE;

tftp_add_srvconn(pCtx);

rc = HsTftpServerStartSend(hs_tftp_server_ev_handler, &pCtx->tftp_handle, (long)pCtx);
if (rc 1= HS_TFTP_RC_OK)
{

printf("Server Start Send failed RC (%u)\n", rc);

hs_tftp_cleanup_ctx(pCtx);

return;

}

pCtx->total_blocks = fsize / TFTP_BLK_SIZE;

printf("Server send transfer started\n");

2.2.1.29 HsTftpErrStr

Declaration:
extern unsigned char *HsTftpErrStr(int rc);

Summary:
Returns a pointer to null terminated error string which describes TFTP error code rc

passed to the function.

Parameters:
rc — error code returned by one of HSTFTP functions

Return values:
Returns a pointer to null terminated error string which describes TFTP error code rc
passed to the function.

Sample usage:

rc = HsTftpTransfer(TFTP_OP_SEND_FILE, dest_ip,
¤t_filenameli], hs_tftp_ev_handler, ip_port, blksize, &pCtx->tftp_handle, (long)pCtx);

if (rc 1= HS_TFTP_RC_OK)

memset(s, 0, sizeof s);

sprintf(s,"Client: cannot send file: HS TFTP Error: %s", HSTftpErrStr(rc));
write_event(s);

hs_tftp_cleanup_ctx(pCtx);

return;

}

write_event("Client send transfer started");

2.2.1.2.10 HsTftpRejectRq

Declaration:
extern void HsTftpRejectRq(int rq, int reason, unsigned char *str);

Summary:
Sends TFTP ERROR packet (in server mode) to remote TFTP client with specified

reason code and descriptive ASCII string. This function may be called in response to
HS_TFTP_EV_WRITE_REQ and HS_TFTP_EV_READ_REQ events.

Parameters:
rq — currently unused

reason — reason code, one of the following:

HS_TFTP_SERVER_ERR_FIO - FILE 1/0 error
HS_TFTP_SERVER_ERR_FNOTFOUND - file not found
HS_TFTP_SERVER_ERR_USER - user defined error, send supplied error string

Str — pointer to zero terminated ASCII string to send with the ERROR packet, only
valid if reason is HS_TFTP_SERVER ERR_USER.

Return values:
none

Sample usage:

HsTftpRejectRg(HS_TFTP_EV_WRITE_REQ, HS_TFTP_SERVER_ERR_USER, "no free contexts");

2.2.1.3 HsTftp Application Notes

2.2.1.3.1 Model of Operation

When user application initialises Hs TFTP library, it provides interface callbacks for the services
used by HS TFTP protocol module: timer management, memory management and event
callbacks. This architecture makes it easy to port HS TFTP protocol module to any environment.
HS TFTP internally at a lower layer interfaces to HS Sock library which provides UDP transport
services. User application need not worry about Winsock - HS TFTP does all transmission,
reception and event handling over socket layer.

TFTP module handles all protocol information flow, error recovery, acknowledgements, timeouts

and so on. When it is appropriate to send next block of data HS TFTP will get next memory block
from user application. Similarly, when data has been received HS TFTP module will get the next

block of memory from user application to store data into.

2.2.1.3.2 Sending File Considerations

Client mode: To send file in client mode, setup all callbacks and call HsTftpTransfer.
Every time, HS TFTP receives an acknowledgement from remote end, it will call
get_tx_buffer callback function — give it the next data block to transmit. After
reception of acknowledge from remote end for last data block, HS TFTP is going to
call the get_tx_buffer callback again — give it NULL pointer and zero length and
consider transfer complete.

Server mode: The procedure for sending files in server mode in similar to client
mode, except it is initiated not with HsTftpStart transfer, but with
HsTftpServerStartSend

2.2.1.3.3 Receiving File Considerations

Client mode: To receive file in client mode, setup all callbacks and call
HsTftpTransfer. Every time HS TFTP receives, correctly processes and acknowledges
a packet from remote end, it will call get_rx_buffer callback function — give it the
pointer of the next space to store the received data into. When HS TFTP receives the
last data packet from remote end it will call event callback function with
HS_TFTP_RX_COMPLETE return code. At this point consider receive transfer
complete.

Server mode: The procedure for receiving files in server mode in similar to client
mode, except it is initiated not with HsTftpStart transfer, but with
HsTftpServerStartReceive

2.2.2 HsFtp

2.2.2.1 HsFtp Overview

HsFtp library implements the client side of the File Transfer Protocol over TCP socket layer
according to RFC 959.

The library allows a user application to connect to remote FTP servers, traverse server directory
structure, send and receive files

HS FTP Client Library incorporates the necessary server response processing and
state machine required to comply with a simple implementation of FTP client.

The following FTP command sequences are supported:
- "USER" - authentication
"PASS" - authentication
"PASV" — establish passive mode data connection
"ABOR" - abort
"LIST" — request listing
"CWD" — change directory
"MKD" — create directory
"RMD" — remove directory
"TYPE" — set transfer type
“RETR" —receive file
"STOR" — transmit file
"DELE" — delete file
"NOOP" — no operation
"PWD" — request current directory name
"RNFR" — rename from
"RNTO" — rename to

Additionally, HS FTP source code package contains “recursive folder operations” module
(HsFtpRecurs) which implements:
recursive folder download (download folder with all files and sub-folders)
recursive folder upload (upload folder with all files and sub-folders)
recursive folder delete (delete folder with all files and sub-folders)

2.2.2.2 HsFtp API

2.2.2.2.1 HsFtplnit

Declaration:
int HsFtplnit(hs_ftp_init_t *plnit)

Summary:
This function initialises HS FTP Library and MUST be called once, prior to calling any other library

functions

Parameters:

hs_ftp_init_t *plnit — pointer to initialization structure of type hs_ftp_init_t. This
structure is described as follows:

Parameter name

Description

*start_timer

Pointer to start timer callback function. HSFTP calls this
function whenever it needs to start a timer

Start Timer callback function is defined as:
typedef long hsftp_timer_start_t(unsigned long timeout_ms, void *arg, hsftp_timer_cb_t *ch);
timeout_ms — timeout value in milliseconds

arg — void parameter argument, must be passed back in
callback function cb

cb — callback function to be called when timer expires:
defined as typedef void hsftp_timer_cb_t(void *arg);

*stop_timer

Pointer to stop timer callback function. HSFTP calls this
function whenever it needs to stop a previously started
timer.

Stop timer function has the following prototype:
typedef void hsftp_timer_stop_t(long timer_han);

timer_han — timer handle

create_file

Pointer to create file callback function. HSFTP calls this
function when it needs to open a disk file for reading or for
writing.

It has the following prototype:
void *hsftp_create_file_t(unsigned char *filename, int mode, int open_always);

filename — name of file to open
mode — access mode:
HSFTP_FILE_READ - read access
HSFTP_FILE_WRITE — write access

open_always: 1 = Open file always regardless of file existed
before or not; O=normal operation

returns file handle cast to void pointer.

close_file

Pointer to function callback to close a file. HSFTP calls this
function when it needs to close a file.

It has the following prototype:
void hsftp_close_file_t(void *hFile);

hFile — file handle (obtained with create file call)

write_file

Pointer to function callback to write file data. HSFTP calls this
function whenever it needs to save next block of data to an
open file.

It has the following prototype:

int hsftp_write_file_t(void *hFile, void *pData, int length, int *oytes_written);
hFile - file handle

pData — pointer to data buffer to write

int length — length of data buffer in bytes to write

bytes_written — pointer to integer to receive actual number of bytes written to file

returns 1: operation successful; 0: file write error occurred

read_file

Pointer to function callback to read file data. HSFTP calls this
function whenever it needs to read next block of data from
an open file.

It has the following prototype:

int hsftp_read_file_t(void *hFile, void *pData, int length, int *bytes_read);
hFile - file handle

pData — pointer to data buffer to read into

int length — length of data buffer in bytes to read

bytes_read — pointer to integer to receive actual number of bytes read

returns 1: operation successful; 0: file write error occurred

getticks

Pointer to function callback to obtain current number of
millisecond ticks since system boot-up.

It has the following prototype:
typedef unsigned long hs_ftp_get_ticks_fn_t(void);

returns number of milliseconds since bootup

Return values:

Value

Description

HS_FTP_RC_OK

Success

HS_FTPCLI_RC_INV_PAR

Invalid parameter

HS_FTPCLI_RC_ALRINIT

HsFtp is already initialized

Sample usage:

hs_ftp_init_t sInit = {O};

slnit.start_timer = sock_timer_start;
slnit.stop_timer = sock_timer_stop;
slnit.create_file = hstfp_create_file;
sinit.close_file = hstfp_close_file;
sinit.read_file = hstfp_read_file;
sinit.write_file = hstfp_write_file;
slnit.getticks = hs_sock_get_ticks;

HsFtplnit(&slnit);
static long sock_timer_start(unsigned long timeout_ms, void *arg, hs_sock_timer_cb_t *cb)
{

timerbock_t *pTmrBIKk;

pTmrBIk = (timerbock_t *)alloc_timer();
if \pTmrBIk) return O;

pTmrBlk->arg = arg;

pTmrBlk->cb = cb;
pTmrBIk->ms_count = 0O;
pTmrBIk->ms_timeout = timeout_ms;
pTmrBlk->enabled = TRUE;

return (long)pTmrBIk;

}
static void sock_timer_stop(long timer_han)
{
timerbock_t *pTmrBIKk;
pTmrBIk = (timerbock_t *) timer_han;
if \pTmrBIk) return;
if \pTmrBlk->allocated) return;
if \pTmrBlk->enabled) return;
pTmrBlk->allocated = FALSE;
pTmrBIk->enabled = FALSE;
}
/*
* Create file callback
*/

static void *hstfp_create_file(unsigned char *filename, int mode, int open_always)

HANDLE hFile;
DWORD accessmode;

switch (mode)

{
case HSFTP_FILE_READ:

accessmode = GENERIC_READ;
break;

case HSFTP_FILE_WRITE:
accessmode = GENERIC_WRITE;

break;
default:
return NULL,;
}
hFile = CreateFile(filename, /I file to open
accessmode, /I open for writing
0, /I no sharing
NULL, /I default security
(open_always) ? OPEN_ALWAYS : OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, /I normal file
NULL);
if (hFile == INVALID_HANDLE_VALUE)

return NULL;

return (void *)hFile;

}

/*

* Close file callback

*/

void hstfp_close_file(void *hFile)

{

}

/*

* Read file callback

*/

int hstfp_read_file(void *hFile, void *pData, int length, int *bytes_read)
{

CloseHandle((HANDLE)hFile);

DWORD dwBytesRead = 0;
BOOL bResult;

bResult = ReadFile((HANDLE)hFile, pData, (DWORD)length, &dwBytesRead, NULL);
*pytes_read = (int)dwBytesRead,;

return (int)bResult;

}

/*

* Write file callback

*/

int hstfp_write_file(void *hFile, void *pData, int length, int *bytes_written)

DWORD dwBytesWritten = 0;

BOOL bResult;
bResult = WriteFile((HANDLE)hFile, pData, (DWORD)length, &dwBytesWritten, NULL);
*bytes_written = (int)dwBytesWritten;

return (int)bResult;

}
static unsigned long hs_sock_get_ticks(void)
{

return (unsigned long)GetTickCount();
}

2.2.2.2.2 HsFtpCleanUp

Declaration:
int HsFtpCleanUp (void)

Summary:
This function de-initialises HS FTP Library and releases resources used by it. Any active control

and data connections shall be disconnected and all contexts and any used memory freed

Parameters:
none

Return values:

Value Description
HS FTP_RC_OK sSuccess
HS FTPCLI RC NOTINIT library not initialised

Sample usage:

HsFtpCleanUp();

2.2.2.2.3 HsFtpTick

Declaration:
int HsFtpTick(void)

Summary:
This function must be called as often as possible from the main program loop. This function

drives internal timers and socket layer operations used by HS FTP module

Parameters:
none

Return values:

Value Description

HS FTP_RC_OK sSuccess

HS FTPCLI RC NOTINIT library not initialised

Sample usage:

while (1)
{
if (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE))
{
if (GetMessage(&msg, NULL, 0, 0))
{
if ({TranslateAccelerator(msg.hwnd, hAccelTable, &msg))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}
}
else
{
break;
}
}
else
{
HsFtpTick();
HsFtpRecursTick();
Sleep(1);
update_stats();
}

2.2.2.2.4 HsFtpCliConnect

Declaration:
extern int HsFtpCliConnect(hs_ftp_conn_t *conn, long *session_handle)

Summary:
This function is used to connect to remote FTP server

Parameters:
hs_ftp_conn_t *conn - Pointer to structure in user code which contains connection parameters.
Please see the next section below for detailed description of data members.

Description of hs_ftp_conn_t structure

Data Member Description

unsigned char *srv_name; Remote FTP server DNS name to connect to, for example
(ftp.hillstone-software.com). This can also be an IP address
string in dotted format, for example “192.168.1.2". This
parameter is a pointer to null terminated string.

unsigned short srv_port; Remote FTP server port to connect to

unsigned char *usrname; FTP account user name for authentication, pointer to null

ftp://ftp.hillstone-software.com

terminated string

unsigned char *password; FTP account password for authentication, pointer to null
terminated string
ftp_callback_t *callback; Pointer to callback function used by HS FTP to communicate to

user application. Please see the detailed description in section
3 (HS FTP Client Module to USER Event Callback and Events)

void *user_ref; User data. The user application can store any value (or pointer)
here. HS FTP module shall always pass this value back
unmodified to user event callback function

long *session_handle - Pointer to long variable In user code to receive HS FTP module handle
associated with this FTP session. This handle must then be used in all further calls to HS FTP
module related to this FTP session.

Return values:

Value Description

HS FTP_RC_OK Success - HS FTP module started session establishment
to remote FTP server. The actual result shall be
asynchronously indicated via user callback event, part of
hs_ftp_conn_t structure, see description in the following

section
HS FTPCLI RC NOTINIT library not initialised
HS FTPCLI RC INV_PAR invalid parameters supplied
HS FTPCLI_RC NO_CTX there are no more free HS FTP Client contexts,
maximum number of concurrent connections reached
HS FTPCLI RC TCPCONNFAIL outgoing TCP connection to remote FTP server failed

Sample usage:

memset(&conn, 0, sizeof(hs_ftp_conn_t));

memset(server_name, 0, sizeof server_name);
GetDlIgltemText(hDlg, IDC_EDIT_NAME, server_name, (sizeof (server_name) -1));

conn.srv_name = server_name,

conn.srv_port = (unsigned short)GetDlgltemInt(hDlg, IDC_EDIT_PORT, &translated, FALSE);
if (Itranslated)

PutLog(hDlg, "Cannot connect: no port specified");
return;

}

memset(username, 0, sizeof (username));
memset(password, 0, sizeof (password));

GetDlIgltemText(hDlg, IDC_EDIT_USER, username, sizeof(username) - 1);
GetDlIgltemText(hDlg, IDC_EDIT_PW, password, sizeof(password) - 1);

conn.usrname = username;
conn.password = password;

conn.callback = hs_ftp_callback;
conn.user_ref = (void *)&myuserref;

rc = HsFtpCliConnect(&conn, &ftp_session);
if (rc 1= HS_FTP_RC_OK)
{
state = APP_STATE_IDLE;
sprintf(s, "HS FTP error: %s", HsFtpGetErrStr(rc));
write_status(hDlg, RED, s);
PutLog(hDlg, s);
return;

}

state = APP_STATE_CONNECTING;
write_status(hDlg, GREEN, "Connecting");
PutLog(hDlg, "Connecting");

2.2.2.25 HsFtpCliDisconnect

Declaration:
extern int HsFtpCliDisconnect(long session_handle)

Summary:
This function is used to close FTP session to remote FTP server

Parameters:
long session_handle - HS FTP session handle, returned in HsFtpCliConnect call.

Return values:

Value Description

HS FTP_RC OK Success, session disconnected
HS FTPCLI RC NOTINIT library not initialised

HS FTPCLI RC INV_PAR invalid parameters supplied

HS FTPCLI_RC NOTALLOC invalid session — not allocated

Sample usage:

HsFtpCliDisconnect(ftp_session);

2.2.2.2.6 HsFtpCIliChDir

Declaration:
extern int HsFtpCliChDir(long session_handle, unsigned char *dir);

Summary:
This function is used to change to a different directory on remote FTP server

Parameters:
long session_handle - HS FTP session handle, returned in HsFtpCliConnect call.

unsigned char - *dir - Directory name to change to, null terminated string

Return values:

Value

Description

HS_FTP_RC_OK

Success, session disconnected, HS FTP initiated
procedure to change to a new directory on remote FTP
server. The actual result shall be asynchronously
indicated via user callback event, please see the detailed
description in (HS FTP Client Module to USER Event
Callback and Events)

HS_FTPCLI_RC_NOTINIT

library not initialised

HS_FTPCLI_RC_INV_PAR

invalid parameters supplied

HS_FTPCLI_RC_NOTALLOC

invalid session — not allocated

HS_FTPCLI_RC_INVALID_CMD

command is invalid for current session state

Sample usage:

rc = HsFtpCIliChDir(ftp_session, s);

22227

Declaration:

HsFtpCliCreateDir

extern int HsFtpCliCreateDir(long session_handle, unsigned char *dir);

Summary:

This function is used to create a new directory on remote FTP server

Parameters:

long session_handle - HS FTP session handle, returned in HsFtpCliConnect call.

unsigned char - *dir - Directory name to change to, null terminated string

Return values:

Value

Description

HS_FTP_RC_OK

Success, session disconnected, HS FTP initiated
procedure to create to a new directory on remote FTP
server. The actual result shall be asynchronously
indicated via user callback event, please see the detailed
description in (HS FTP Client Module to USER Event
Callback and Events)

HS_FTPCLI_RC_NOTINIT

library not initialised

HS_FTPCLI_RC_INV_PAR

invalid parameters supplied

HS_FTPCLI_RC_NOTALLOC

invalid session — not allocated

HS_FTPCLI_RC_INVALID_CMD

command is invalid for current session state

Sample usage:

rc = HsFtpCliCreateDir(ftp_session, editstr);

22228

HsFtpCliRemoveDir

Declaration:
extern int HsFtpCliRemoveDir(long session_handle, unsigned char *dir);

Summary:
This function is used to remove a directory on remote FTP server

Parameters:
long session_handle - HS FTP session handle, returned in HsFtpCliConnect call.

unsigned char - *dir - Directory name to change to, null terminated string

Return values:

Value Description

HS FTP_RC_OK Success, session disconnected, HS FTP initiated
procedure to create to remove a directory on remote FTP
server. The actual result shall be asynchronously
indicated via user callback event, please see the detailed
description in (HS FTP Client Module to USER Event
Callback and Events)

HS FTPCLI RC NOTINIT library not initialised

HS FTPCLI RC INV_PAR invalid parameters supplied

HS FTPCLI RC NOTALLOC invalid session — not allocated

HS FTPCLI_RC_INVALID_CMD command is invalid for current session state

Sample usage:

rc = HsFtpCliRemoveDir(ftp_session, editstr);

2.2.2.29 HsFtpCliList

Declaration:
extern int HsFtpCliList(long session_handle);

Summary:
This function is used to receive directory file listing from the remote FTP server. The listing is

returned asynchronously via user event callback — event HS_FTPCLI_USR_EV_LIST, , please
see the detailed description in section (HS FTP Client Module to USER Event Callback and
Events). The listing is returned in the same format as it came in from the server, the actual format
depends on server OS and FTP software. Please see the example of parsing the listing (breaking
down into filenames) supplied in HS FTP Demo application, function load_remote_directory.

Parameters:
long session_handle - HS FTP session handle, returned in HsFtpCliConnect call.

Return values:

Value Description

HS FTP_RC_OK Success, session disconnected, HS FTP initiated
procedure to receive directory listing from remote FTP
server. The actual result shall be asynchronously
indicated via user callback event, please see the detailed
description in (HS FTP Client Module to USER Event

Callback and Events)
HS FTPCLI RC NOTINIT library not initialised
HS FTPCLI RC INV_PAR invalid parameters supplied
HS FTPCLI RC NOTALLOC invalid session — not allocated

Sample usage:

rc = HsFtpCliList(ftp_session);

2.2.2.2.10 HsFtpCliGetFile

Declaration:
extern int HsFtpCliGetFile(long session_handle, unsigned char *filename, __int64 fsize)

Summary:
This function is used to transfer the specified file from remote FTP server to local system.

Successful return of this function indicates that HS FTP has started file reception protocol
sequence.

HS FTP handles all aspects of receiving the file (opening disk file, receiving and writing blocks of
data and closing file). As the file data gets transferred block by block, events
HS_FTPCLI_USR_EV_RX_STATUS are generated, informing the application that the next block
of data (specifying its size) has been written from to file.

Successful completion of file transfer (when file has been completely received and disk file
closed) is reported to application via HS_FTPCLI_USR_EV_RXDONE event

Parameters:
long session_handle - HS FTP session handle, returned in HsFtpCliConnect call.

unsigned char - *filename - Filename to get, pointer to null terminated string

__int64 fsize - Size of file to get, 64 bit integer. File size shall be obtained first after successful call
to HsFtpCliList

Return values:

Value Description

HS FTP_RC_OK Success, session disconnected, HS FTP initiated
procedure to start downloading the specified file from
remote FTP server. The actual result shall be
asynchronously indicated via user callback event, please
see the detailed description in (HS FTP Client Module to
USER Event Callback and Events)

HS FTPCLI RC NOTINIT library not initialised
HS FTPCLI RC INV_PAR invalid parameters supplied
HS FTPCLI RC NOTALLOC invalid session — not allocated

HS FTPCLI RC INVALID CMD command is invalid for current session state

Sample usage:

rc = HsFtpCliGetFile(ftp_session, rxfname, remote_fsz);

2.2.2.2.11 HsFtpCliSendFile

Declaration:
extern int HsFtpCliSendFile (long session_handle, unsigned char *filename)

Summary:
This function is used to transfer the specified file from local system to remote FTP server.

Successful return of this function indicates that HS FTP has started file sending protocol
sequence.

HS FTP handles all aspects of sending the file (opening disk file, reading blocks of data and
sending them, closing file). As the file data gets transferred block by block, events
HS_FTPCLI_USR_EV_TX_STATUS are generated, informing the application that the next block
of data (specifying its size) has been read from disk file and sent to FTP server

Successful completion of file transfer (when file has been completely sent and disk file closed) is
reported to application via HS_FTPCLI_USR_EV_TXDONE event

Parameters:
long session_handle - HS FTP session handle, returned in HsFtpCliConnect call.

unsigned char - *filename - Filename to get, pointer to null terminated string

Return values:

Value Description

HS FTP_RC_OK Success, session disconnected, HS FTP initiated
procedure to start uploading the specified file to remote
FTP server. The actual result shall be asynchronously
indicated via user callback event, please see the detailed
description in (HS FTP Client Module to USER Event
Callback and Events)

HS FTPCLI RC NOTINIT library not initialised

HS FTPCLI RC INV_PAR invalid parameters supplied

HS FTPCLI RC NOTALLOC invalid session — not allocated

HS FTPCLI_RC_INVALID_CMD command is invalid for current session state

Sample usage:

rc = HsFtpCliSendFile(ftp_session, txfhame);

2.2.2.2.12 HsFtpCliDeleteFile

Declaration:
extern int HsFtpCliDeleteFile(long session_handle, unsigned char *filename);

Summary:
This function is used to delete a file on remote FTP server

Parameters:
long session_handle - HS FTP session handle, returned in HsFtpCliConnect call.
unsigned char - *filename - Filename to get, pointer to null terminated string

Return values:

Value Description

HS FTP_RC _OK Success, session disconnected, HS FTP initiated
procedure to delete the specified file from remote FTP
server. The actual result shall be asynchronously
indicated via user callback event, please see the detailed
description in (HS FTP Client Module to USER Event
Callback and Events)

HS FTPCLI RC NOTINIT library not initialised

HS FTPCLI RC INV_PAR invalid parameters supplied

HS FTPCLI RC NOTALLOC invalid session — not allocated

HS FTPCLI RC INVALID CMD command is invalid for current session state

Sample usage:

rc = HsFtpCliDeleteFile(ftp_session, editstr);

2.2.2.2.13 HsFtpCliAbort

Declaration:
extern int HsFtpCliAbort (long session_handle)

Summary:
This function is used to abort current FTP operation in progress

Parameters:
long session_handle - HS FTP session handle, returned in HsFtpCliConnect call.

Return values:

Value Description

HS FTP_RC_OK Success, session disconnected, HS FTP initiated
procedure to abort current command. The actual result
shall be asynchronously indicated via user callback
event, please see the detailed description in (HS FTP
Client Module to USER Event Callback and Events)

HS FTPCLI RC NOTINIT library not initialised
HS FTPCLI RC INV_PAR invalid parameters supplied
HS FTPCLI RC NOTALLOC invalid session — not allocated

Sample usage:

rc = HsFtpCliAbort(ftp_session);

2.2.2.2.14 HsFtpCliRename

Declaration:

extern int HsFtpCliRename(long session_handle, unsigned char *oldname, unsigned char

*newname)

Summary:

This function is used to rename a file or folder on remote FTP server

Parameters:

long session_handle - HS FTP session handle, returned in HsFtpCliConnect call.

unsigned char * oldname - File or folder name to rename, null terminated string

unsigned char *newname - New name for file or folder name, null terminated string

Return values:

Value

Description

HS_FTP_RC_OK

Success, session disconnected, HS FTP initiated
procedure to rename a file or folder on remote FTP
server. The actual result shall be asynchronously
indicated via user callback event, please see the detailed
description in (HS FTP Client Module to USER Event
Callback and Events)

HS_FTPCLI_RC_NOTINIT

library not initialised

HS_FTPCLI_RC_INV_PAR

invalid parameters supplied

HS_FTPCLI_RC_NOTALLOC

invalid session — not allocated

HS_FTPCLI_RC_INVALID_CMD

command is invalid for current session state

Sample usage:

rc = HsFtpCliRename(ftp_session, oldpath, editstr);

2.2.2.2.15 HsFtpCliGetCurrentDirectory

Declaration:

extern int HsFtpCliGetCurrentDirectory(long session_handle);

Summary:

This function is used to request the current working directory name from remote FTP server

Parameters:

long session_handle - HS FTP session handle, returned in HsFtpCliConnect call.

Return values:

Value

Description

HS_FTP_RC_OK

Success, session disconnected, HS FTP initiated

procedure to request the current working directory from
remote FTP server. The actual result shall be
asynchronously indicated via user callback event, please
see the detailed description in (HS FTP Client Module to
USER Event Callback and Events)

HS FTPCLI RC NOTINIT library not initialised

HS FTPCLI RC INV_PAR invalid parameters supplied

HS FTPCLI RC NOTALLOC invalid session — not allocated

HS FTPCLI RC INVALID CMD command is invalid for current session state

Sample usage:

rc = HsFtpCliGetCurrentDirectory(ftp_session);

2.2.2.2.16 HsFtpCliNoop

Declaration:

extern int HsFtpCliNoop(long session_handle);

Summary:
This function is used to send NOOP command to remote FTP server. This command does not

require the server to execute any action except send a valid response

Parameters:

long session_handle - HS FTP session handle, returned in HsFtpCliConnect call.

Return values:

Value Description

HS FTP_RC _OK Success, session disconnected, HS FTP initiated
procedure to send NOOP command to remote FTP
server. The actual result shall be asynchronously
indicated via user callback event, please see the detailed
description in (HS FTP Client Module to USER Event
Callback and Events)

HS FTPCLI RC NOTINIT library not initialised

HS FTPCLI RC INV_PAR invalid parameters supplied

HS FTPCLI RC NOTALLOC invalid session — not allocated

HS FTPCLI RC INVALID CMD command is invalid for current session state

Sample usage:

rc = HsFtpCliNoop(ftp_session);

2.2.2.2.17 HsFtpSetConfig

Declaration:
extern void HsFtpSetConfig (hs_ftp_config_t *cfg);

Summary:
This function is used to set HS FTP global configuration parameters

Parameters:

hs_ftp_config_t *cfg - Pointer to configuration structure hs_ftp_config_t, with the following data
members: ong t1_timeout — timeout in milliseconds for all HS FTP operations. Default timeout is
15000 milliseconds

Return values:

None

Sample usage:

T1 =val,
cfg.tl_timeout = (long)T1;
HsFtpSetConfig(&cfg);

2.2.2.2.18 HsFtpGetStats

Declaration:
extern void HsFtpGetStats (hsftp_stats_t *pStats);

Summary:
This function is used to set HS FTP global configuration parameters

Parameters:
hsftp_stats t *pStats - Pointer to stats structure with the following data members:

__int64 total_bytes_TX; /[total number of bytes transmitted
__inté4 total_bytes_RX; /I total number of bytes received

These counters include both control and data FTP connections

Return values:

None

Sample usage:

hsftp_stats t stats = {0};

HsFtpGetStats(&stats);

2.2.2.3 HS FTP Client Module to User Event Callback and Events

2.2.2.3.1 Event Callback Prototype

typedef int ftp_callback_t(void *user_ref, int ev, long argl, long arg2, long arg3);

Parameter Description

void *user_ref User data. The user application passes any value (or pointer) in the call

to HsFtpCliConnect. HS FTP module always pass this value back
unmodified to this parameter, which can be used by user code to identify
FTP session contexts.

int ev Event id, the full list and description is provided in section 3.2 Events.
long argl Parameter 1, specific to event id

long arg? Parameter 2, specific to event id

long arg3 Parameter 3, specific to event id

Returns:

True or False. For most events the return is insignificant and is not checked by HS FTP Client.
Where HS FTP needs a specific return, it is clearly specified in this document.

2.2.2.4 Events

Event

Description

HS_FTPCLI_USR_EV_LOGGEDIN

FTP session to remote FTP server established,
login successful. The user application can now call
functions to get directory listing, change directory,
get and send files.

Argl — pointer to buffer containing ftp server reply
string (for example “226 logged in”)

Arg2 — length of buffer containing ftp server reply
string

Arg3-0

HS_FTPCLI_USR_EV_CLOSED

FTP control connection and FTP session closed
(error condition).

Argl -0

Arg2 -0

Arg3 — HS FTP library integer debug code —
indicates from which state the callback function was
called. Refer to section 3.3 for full list of codes.

HS_FTPCLI_USR_EV_CONNFAIL

Outgoing TCP connection to remote FTP server
failed to establish.

Argl — pointer to null terminated additional
information string

Arg2 -0

Arg3-0

HS_FTPCLI_USR_EV_SRVERR

FTP session closed due to server error reply.

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3 — HS FTP library integer debug code —
indicates from which state the callback function was
called. Refer to section 3.3 for full list of codes.

HS_FTPCLI_USR_EV_UNEXP

Unexpected server response, session closed.

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3 — HS FTP library integer debug code —
indicates from which state the callback function was
called. Refer to section 3.3 for full list of codes.

HS_FTPCLI_USR_EV_UNKNOWN

Unrecognized server response, session closed.

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3 — HS FTP library integer debug code —
indicates from which state the callback function was
called. Refer to section 3.3 for full list of codes

HS_FTPCLI_USR_EV_NOCTX

FTP session closed, HS FTP library run out of free
concurrent connection contexts

Argl -0
Arg2 -0
Arg3-0

HS_FTPCLI_USR_EV_TIMEDOUT

FTP session closed due to timeout

Argl — pointer to null terminated sting with additional
information

Arg2 -0

Arg3-0

HS_FTPCLI_USR_EV_NOMEM

FTP session closed, no free memory

Argl -0

Arg2 -0

Arg3 — HS FTP library integer debug code —
indicates from which state the callback function was
called. Refer to section 3.3 for full list of codes

HS_FTPCLI_USR_EV_LIST

This event is used by HS FTP module to return a
buffer containing current directory listing from
remote FTP server after HsFtpCliList function call

Argl — pointer to start of buffer containing remote
FTP server current directory listing.

Arg2 — length of buffer

Arg3-0

User application must copy buffer content to local
memory. On return from the callback the buffer
memory is deallocated by HS FTP module.

HS_FTPCLI_USR_EV_CWD_FAILED

HsFtpCIliChDir function failed (CWD FTP operation
failed).

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3-0

HS_FTPCLI_USR_EV_CWD_DONE

HsFtpCIliChDir function successfully completed —
Current directory on remote FTP server successfully
changed to new specified directory.

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3-0

HS_FTPCLI_USR_EV_RXDONE

File successfully received — HsFtpCliGetFile
function completed.

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3-0

HS_FTPCLI_USR_EV_TXDONE

File successfully transmitted — HsFtpCliSendFile
completed.

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3-0

HS_FTPCLI_USR_EV_RXINCOMPL

File receive operation failed. Partial file received.

Argl -0
Arg2 -0
Arg3-0

HS_FTPCLI_USR_EV_TX_STATUS

Notifies the application that the next block of file
data has been transmitted

Arg3 — size of data block that has been transmitted

HS_FTPCLI_USR_EV_RX_STATUS

Notifies the application that the next data block of
file from remote FTP server has been received

Arg3 — size of data block that has been received

HS_FTPCLI_USR_EV_TYP_FAILED

Setting transfer type failed (TYPE command failed)

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3 — HS FTP library integer debug code —
indicates from which state the callback function was
called. Refer to section 3.3 for full list of codes

HS_FTPCLI_USR_EV_STOR_FAILED

File transmit operation failed — HsFtpCliSendFile
function completed with error.

Argl -0

Arg2 -0

Arg3 — HS FTP library integer debug code —
indicates from which state the callback function was
called. Refer to section 3.3 for full list of codes

HS_FTPCLI_USR_EV_ABORTED

Current FTP operation aborted — HsFtpCliAbort
function completed

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3 — HS FTP library integer debug code —
indicates from which state the callback function was
called. Refer to section 3.3 for full list of codes

HS_FTPCLI_USR_EV_ABOR_FAILED

Abort operation failed - HsFtpCliAbort function
completed with error

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3 — HS FTP library integer debug code —
indicates from which state the callback function was
called. Refer to section 3.3 for full list of codes

HS_FTPCLI_USR_EV_MKD_FAILED

HsFtpCliCreateDir function failed (MKD FTP
operation failed).

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3-0

HS_FTPCLI_USR_EV_MKD_DONE

HsFtpCliCreateDir function successfully completed
— Directory on remote FTP server successfully
created.

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3-0

HS_FTPCLI_USR_EV_RMD_FAILED

HsFtpCliRemoveDir function failed (RMD FTP
operation failed).

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3-0

HS_FTPCLI_USR_EV_RMD_DONE

HsFtpCliRemoveDir function successfully completed
— Directory on remote FTP server successfully
deleted

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3-0

HS_FTPCLI_USR_EV_DELE_DONE

HsFtpCliDeleteFile function successfully completed
— File on remote FTP server successfully deleted

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3-0

HS_FTPCLI_USR_EV_DELE_FAILED

HsFtpCliDeleteFile function failed (DELE FTP
operation failed).

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3-0

HS_FTPCLI_USR_EV_RENAME_DONE

HsFtpCliRename function successfully completed
file or folder on remote FTP server renamed

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3-0

HS_FTPCLI_USR_EV_RENAME_FAILED

HsFtpCliRename function failed (RNFR FTP
command failed)

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3-0

HS_FTPCLI_USR_EV_PWD_DONE

HsFtpCliGetCurrentDirectory function completed
successfully.

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3-0

HS_FTPCLI_USR_EV_PWD_FAILED

HsFtpCliGetCurrentDirectory function failed (FTP
PWD command failed).

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3-0

HS_FTPCLI_USR_EV_NOOP_DONE

Response to NOOP command received

Argl — pointer to buffer containing ftp server reply
string

Arg2 — length of buffer containing ftp server reply
string

Arg3-0

2.2.2.5 Information Codes

HS_FTPC_ST_WAIT WELCOME
HS_FTPC_ST CHDIR RSP
HS_FTPC_ST LIST WAIT_RSP
HS_FTPC_ST WAIT PASV_RSP
HS_FTPC_ST WAIT_USER_RSP
HS_FTPC_ST WAIT PASS RSP

- waiting for initial server reply on control session setup
- waiting for reply to CWD command

- waiting for reply to LIST command

- waiting for reply to PASV command

- waiting for reply to USER command

- waiting for reply to PASS command

HS_FTPC_ST WAIT LSTDATA_ CONN
HS_FTPC_ST WAIT_CWDDATA_CONN
HS_FTPC_ST WAIT TYPE_RSP
HS_FTPC_ST WAIT_RETRDATA_CONN
HS_FTPC_ST WAIT_STORDATA_CONN
HS_FTPC_ST STOR_WAIT RSP
HS_FTPC_ST RETR WAIT RSP
HS_FTPC_ST STOR_SENDING
HS_FTPC_ST WAIT ABOR RSP
HS_FTPC_ST LIST WAIT DTCLOSE
HS_FTPC_ST MKDIR_RSP
HS_FTPC_ST RMDIR RSP
HS_FTPC_ST DELE_RSP

- waiting for data connection (LIST command)
- waiting for data connection (CWD command)
- waiting for reply to TYPE command

- waiting for data connection (RETR command)
- waiting for data connection (STOR command)
- STOR wait response state

- RETR wait response state

- STOR sending file data state

- waiting for reply to ABOR command

- waiting for data connection to close

- waiting for response to MKD

- waiting for response to RMD

- waiting for response to DELE

HS_FTPC_ST_WAIT_MKDDATA_CONN - waiting for data connection (MKD)

HS_FTPC_ST_WAIT_RMDDATA_CONN - waiting for data connection (RMD)
HS_FTPC_ST_WAIT_DELEDATA_CONN - waiting for data connection (DELE)
HS_FTPC_ST_WAIT_NOOP_RSP - waiting for response to NOOP
HS_FTPC_ST_WAIT_PWD_RSP - waiting for response to PWD
HS_FTPC_ST_WAIT_RNFR_RSP - waiting for response to RNFR
HS_FTPC_ST_WAIT_RNTO_RSP - waiting for response to RNTO
HS_FTPC_ST_LIST_WAIT_DATA_CLOSED - waiting for data connection closed in LIST sequence
HS_FTPC_ST_LOGGED_IN - logged_in state

2.2.2.6 Recursive Folder Operations

HS FTP Source Code Library package includes recursive folder operations module HsFtpRecurs
which includes the following functions:

HsFtpRecursDownloadFolder — recursively download entire folder with all sub-folders
and files from remote FTP server.

HsFtpRecursUploadFolder — recursively upload entire folder with all sub-folders and files
to remote FTP server.

HsFtpRecursDeleteFolder — recursively delete entire folder with all sub-folders and files
from remote FTP server.

Recursive operations module is not part of the code HSFTP library, but instead is implemented as
an object module that links to the main application which in turn links in the code HSFTP.LIB

HsFtpDemo.exe HsFtpRecurs.obj
HsFtpDemo.c —~N HsFtpRecurs.c
N HsFtpRecurs.h
EAY HsFtpRecurs_if.h

HsFtp.Lib /

2.2.2.6.1 API Functions

2.2.2.6.1.1 HsFtpRecurslinit

Declaration:
Extern void HsFtpRecurslnit (hsftp_recursive_callback_t *cb)

Summary:
This function is used to initialise recursive folder operations module, it must be used before any

other functions of this module are used

Parameters:

hsftp_recursive_callback_t *cb - Function pointer to recursive module callback functions which
receives event notifications of folder operations completion, failures, status and progress

Return values:

None

Sample usage:

HsFtpRecursinit(hsftp_recursive_callback);

2.2.2.6.1.2 HsFtpRecurseCleanUp

Declaration:
Extern void HsFtpRecurseCleanUp (void)

Summary:
This function is used to release all resources used by recursive folder operations module

Parameters:
None

Return values:

None

Sample usage:

HsFtpRecurseCleanUp();

2.2.2.6.1.3 HsFtpRecursTick

Declaration:
void HsFtpRecursTick(void)

Summary:
This function must be called as often as possible from the main program loop.

Parameters:
None

Return values:

None

Sample usage:

while (1)
if (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE))
{
if (GetMessage(&msg, NULL, 0, 0))
{

if (ITranslateAccelerator(msg.hwnd, hAccelTable, &msg))

TranslateMessage(&msg);
DispatchMessage(&msg);

break;

HsFtpTick();
HsFtpRecursTick();

Sleep(1);

update_stats();

2.2.2.6.1.4 HsFtpRecursDownloadFolder

Declaration:
extern int HsFtpRecursDownloadFolder (long session_handle, unsigned char *foldername, int
overwrite);

Summary:
This function is used to download an entire folder with all sub-folders and files from remote FTP

server

Parameters:
long session_handle - HS FTP session handle, returned in HsFtpCliConnect call.

unsigned char *foldername - Folder name to download, null terminated string

int overwrite - 1 = Any files already existing at local file system shall be overwritten

0 = Files already existing at local files system shall be overwritten only if the files size does not
match the files size of the corresponding file at the remote FTP server, otherwise if the file sizes
maitch, the file is not downloaded

Return values:

Value Description

HS FTP_RC_OK Success, , Recursive folder download started. The
actual result shall be asynchronously indicated via user
callback event

HSFTP_RECURS_RC_NOTINIT Recursive folder operations module not initialised
HSFTP_RECURS_RC_INVPAR invalid parameters supplied
HSFTP_RECURS RC BUSY command is invalid for current session state

Sample usage:

rc = HsFtpRecursDownloadFolder(ftp_session, editstr, overwrite);

2.2.2.6.1.5 HsFtpRecursUploadFolder

Declaration:
extern int HsFtpRecursUploadFolder (long session_handle, unsigned char *foldername)

Summary:
This function is used to upload an entire folder with all sub-folders and files to remote FTP server

Parameters:
long session_handle - HS FTP session handle, returned in HsFtpCliConnect call.
unsigned char *foldername - Folder name to upload, null terminated string

Return values:

Value Description

HSFTP_RECURS_RC_OK Success, Recursive folder upload started. The actual
result shall be asynchronously indicated via user callback
event

HSFTP_RECURS_RC_NOTINIT Recursive folder operations module not initialised

HSFTP_RECURS_ RC_INVPAR invalid parameters supplied

HSFTP_RECURS RC BUSY command is invalid for current session state

Sample usage:

rc = HsFtpRecursUploadFolder(ftp_session, editstr);

2.2.2.6.1.6 HsFtpRecursDeleteFolder

Declaration:
extern int HsFtpRecursUploadFolder (long session_handle, unsigned char *foldername)

Summary:
This function is used to delete an entire folder with all sub-folders and files from remote FTP

server
Parameters:

long session_handle - HS FTP session handle, returned in HsFtpCliConnect call.
unsigned char *foldername - Folder name to delete, null terminated string

Return values:

Value Description

HSFTP_RECURS_RC_OK Success, Recursive folder deletion started. The actual
result shall be asynchronously indicated via user callback
event

HSFTP_RECURS_RC_NOTINIT Recursive folder operations module not initialised

HSFTP_RECURS_ RC_INVPAR invalid parameters supplied

HSFTP_RECURS RC BUSY command is invalid for current session state

Sample usage:

rc = HsFtpRecursDeleteFolder(ftp_session, editstr);

2.2.2.6.2 Recursive Operations Callback and Events

2.2.2.6.2.1 Event Callback Prototype

typedef void hsftp_recursive_callback_t (long ftp_session, int ev, long argl, long arg2);

Parameter Description

long ftp_session FTP session handle.

int ev Event id, the full list and description is provided in next section
long argl Parameter 1, specific to event id

long arg?2 Parameter 2, specific to event id

2.2.2.6.2.2 Events

Event

Description

HSFTP_RECURS_USR_EV_FOLDER_DOWNLOAD_FAILED

Recursive folder download
operation failed.

Argl — Recursive operations
module return code, see next
section for a list of return codes

Arg2 — Core HS FTP library
event that caused this event,
see section 3.2 for a list of core
HS FTP events

HSFTP_RECURS_USR_EV_FOLDER_DOWNLOAD_DONE

Recursive folder download
operation complete with
success.

Argl -0
Arg2 -0

HSFTP_RECURS_USR_EV_FOLDER_DOWNLOAD_STATUS

reports start of stop of
individual file download
operation

Argl — If Arg2 == 1, long
pointer to a pathname of the
item now starting to download

Arg2 — status code:

1 = Start of individual item
download

2 = Completion of individual
item download

HSFTP_RECURS_USR_EV_FOLDER_UPLOAD_FAILED

Recursive folder upload

operation failed.

Argl — Recursive operations
module return code, see next
section for a list of return codes

Arg2 — Core HS FTP library
event that caused this event,
see section 3.2 for a list of core
HS FTP events

HSFTP_RECURS_USR_EV_FOLDER_UPLOAD_DONE

Recursive folder upload
operation complete with
success.

Argl -0
Arg2 -0

HSFTP_RECURS_USR_EV_FOLDER_UPLOAD_STATUS

reports start of stop of
individual file upload operation

Argl — If Arg2 == 1, long
pointer to a pathname of the
item now starting to upload

Arg?2 — status code:

1 = Start of individual item
upload

2 = Completion of individual
item upload

HSFTP_RECURS_USR_EV_FOLDER_DELETE_FAILED

Recursive folder delete
operation failed.

Argl — Recursive operations
module return code, see next
section for a list of return codes

Arg2 — Core HS FTP library
event that caused this event,
see section 3.2 for a list of core
HS FTP events

HSFTP_RECURS_USR_EV_FOLDER_DELETE_DONE

Recursive folder delete
operation complete with
success.

Argl -0
Arg2 -0

HSFTP_RECURS_USR_EV_FOLDER_DELETE_STATUS

reports start of stop of
individual item delete operation

Argl — If Arg2 == 1, long
pointer to a pathname of the
item now being deleted

Arg?2 — status code:

1 = Start of individual item
delete

2 = Completion of individual
item delete

HSFTP_RECURS_USR_EV_FOLDER_PROGRESS

Indicates individual item
operation progress (item
upload, download or delete)

Argl — percent complete 0 —
100
Arg2 -0

2.2.2.6.3 Recursive Operations Module Return Codes

Return code Description

HSFTP_RECURS_RC_OK Success

HSFTP_RECURS_RC_BUSY

Invalid state, recursive folder operation in progress

HSFTP_RECURS_RC_NOTINIT

HsFtpRecurs module not initialised

HSFTP_RECURS_RC_INVPAR

Invalid parameters

HSFTP_RECURS_RC_NOMEM

Out of memory

HSFTP_RECURS_RC_RCHDIR

Remote change directory failed

HSFTP_RECURS RC_LIST

List command failed

HSFTP_RECURS_RC_FILE

Individual file operation failed

HSFTP_RECURS_RC_RMDIR

Remove directory at remote FTP server failed

HSFTP_RECURS_RC_LCHDIR

Failed to change into local directory

HSFTP_RECURS_RC_FOPEN

Failed to open local file

HSFTP_RECURS_RC_RMKDIR

Failed to create folder at remote FTP server

HSFTP_RECURS_RC_FSEND

Failure during sending a file

HSFTP_RECURS_RC_PATH

Pathname too long

2.2.3 HsSmtp

2.2.3.1 Overwiew

HS SMTP implements the client side of Simple Mail Transfer Protocol (SMTP) over TCP socket
layer according to RFC 821. Support for transfer of basic message header and text is provided.

HS SMTP upports ESMTP extension for LOGIN Authentication using Base64 encoding and
message sending to multiple recipients from address list.

HS SMTP supports sending binary file attachments using MIME version 1.0 base64 encoding

HS SMTP Library incorporates the necessary state machine, transparency
procedures, and server response processing required to provide for a simple and
robust SMTP client implementation

2.2.3.2 HsSmtp API

2.2.3.2.1 HsSmtplnit

Declaration:
extern int HsSmtplnit(hssmtp_init_t *init);

Summary:

This function initialises HS SMTP Library. It must be called at initialisation, before any other
functions are called.

Calling HsSmtplnit twice will return an error. You can call HsSmtpDestroy first to de-initialise HS
SMTP Library and then call HsSmtplInit again

Parameters:
hssmtp_init_t *init — pointer to initialization structure of type hssmtp_init_t. This
structure is described as follows:

Parameter name Description

*start_timer Pointer to start timer callback function. HSSMTP calls this
function whenever it needs to start a timer

Start Timer callback function is defined as:

typedef long hssmtp_timer_start_t(unsigned long timeout_ms, void *arg, hssmtp_timer_cb_t
*cb);

timeout_ms — timeout value in milliseconds

arg — void parameter argument, must be passed back in
callback function cb

cb — callback function to be called when timer expires:
defined as typedef void hssmtp_timer_cb_t(void *arg);

*stop_timer

Pointer to stop timer callback function. HSSMTP calls this
function whenever it needs to stop a previously started
timer.

Stop timer function has the following prototype:
typedef void hssmtp_timer_stop_t(long timer_han);

timer_han — timer handle

create_file

Pointer to create file callback function. HSSMTP calls this
function when it needs to open a disk file for reading or for
writing.

It has the following prototype:
void *hssmtp_create file_t(unsigned char *filename, int mode, int open_always);

filename — name of file to open
mode — access mode:
HSSMTP_FILE_READ — read access
HSSMTP_FILE_WRITE — write access

open_always: 1 = Open file always regardless of file existed
before or not; O=normal operation

returns file handle cast to void pointer.

close_file

Pointer to function callback to close a file. HSSMTP calls this
function when it needs to close a file.

It has the following prototype:
void hssmtp_close_file_t(void *hFile);

hFile — file handle (obtained with create_file call)

write_file

Pointer to function callback to write file data. HSSMTP calls
this function whenever it needs to save next block of data to
an open file.

It has the following prototype:

int hssmtp_write_file_t(void *hFile, void *pData, int length, int *oytes_written);
hFile - file handle

pData — pointer to data buffer to write

int length — length of data buffer in bytes to write

bytes_written — pointer to integer to receive actual number of bytes written to file

returns 1: operation successful; 0: file write error occurred

read_file Pointer to function callback to read file data. HSSMTP calls
this function whenever it needs to read next block of data
from an open file.

It has the following prototype:

int hssmtp_read_file_t(void *hFile, void *pData, int length, int *bytes_read);
hFile - file handle

pData — pointer to data buffer to read into

int length — length of data buffer in bytes to read

bytes_read — pointer to integer to receive actual number of bytes read

returns 1: operation successful; 0: file write error occurred

getticks Pointer to function callback to obtain current number of
millisecond ticks since system boot-up.

It has the following prototype:
typedef unsigned long hssmtp_get_ticks_fn_t(void);

returns number of milliseconds since bootup

unsigned char domain[HS_SMTP_MAX_DOMAIN]; // local domain name

Network name identifying this host. Hssmtp will use this
name when communicating to SMTP server. It can be set to
any arbitrary string, such as “my desktop”.

Return values:

Value Description

HS SMTP_RC OK Success

HS SMTP RC ALRINIT HS SMTP Library is already initialised
HS SMTP_RC INV_PAR Invalid parameter(s)

Sample usage:

hssmtp_init_t smtp_init = {0};

strcpy(smtp_init.domain, "mydomain™);
smtp_init.start_timer = sock_timer_start;
smtp_init.stop_timer = sock_timer_stop;

smtp_init.create_file = hssmtp_create_file;
smtp_init.close_file = hssmtp_close_file;
smtp_init.read_file = hssmtp_read_file;
smtp_init.write_file = hssmtp_write_file;
smtp_init.getticks = hs_sock_get_ticks;
smtp_init.getfile_size = hssmtp_get_filesize;

if (HsSmtplnit(&smtp_init) 1= HS_SMTP_RC_OK)

MessageBox(0,"HS SMTP Initialisation failure™, 0, 0);
return;

2.2.3.2.2 HsSmtpDestroy

Declaration:
int HsSmtpDestroy(void);

Summary:
This function de-initialises HS SMTP Library, releases all used resources and cleans up Socket

Interface Layer.

Parameters:
None

Return values:

Value Description
HS SMTP_RC OK Success
HS SMTP_RC NOTINIT HS SMTP Library not initialised

Sample usage:

HsSmtpDestroy();

2.2.3.2.3 HsSmtpTick

Declaration:
int HsSmtpTick (void);

Summary:
This function must be called from the user application periodically and as often as possible. This

function drives internal operation of the socket layer (reading events from TCP sockets) and
pacing internal SMTP timers.

Parameters:
None

Return values:

Value Description
HS SMTP_RC OK Success
HS SMTP_RC NOTINIT HS SMTP Library not initialised

Sample usage:

/I main message processing loop

while (1)
{
if (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE))
{
if (GetMessage(&msg, NULL, 0, 0))
if (ITranslateAccelerator(msg.hwnd, hAccelTable, &msg))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}
}
else
{
break;
}
}
else
{
HsSmtpTick();
Sleep(1);
if (adhandle)
{
r = pcap_next_ex(adhandle, &header, &pkt_data);
if (r>0)
{
HslpReceivePacket(pkt_data, (int)header->caplen);
}
}
}

2.2.3.2.4 HsSmtpSendMail

Declaration:
Int HsSSmptSendMail(hs_smtp_mail_t *m, long *session_handle)

Summary:
This function sends an email text message to remote SMTP server according to RFC821. Fill out

hs_smtp_mail_t structure members and set pointer to storage for SMTP session handle prior to
calling the function. Various structure fields are explained below. The function is non-blocking and
complete asynchronously. The completion of mail transfer operation is reported via event callback
function. The pointer to callback function is also specified in hs_smtp_mail_t structure.

Parameters:

hs_smtp_mail_t *m - Pointer to parameter structure as follows:

Field name

Description

srv_name

Pointer to SMTP server name
Max. length limited to 80 bytes
(Note 1)

srv_ip

Pointer to SMTP IP address string
in the format “n.n.n.n"
(Note 1)

srv_port

Decimal SMTP server port number.
(usually 25)

send_addr

Sender email address string
Max. length limited to 80 bytes

recv_addr

Destination email address string
Max. length limited to 80 bytes

subj

Message subject
Max. length limited to 80 bytes

cc

Cc email address
Max. length limited to 80 bytes

msgp

Pointer to message text buffer

msglen

message text buffer length

do_auth

Integer. Set to 1 if SMTP server requires
authenticaton. LOGIN method authentication
of ESMTP shall be performed

usrname

Pointer to username string for authenticaton,
ignored if do_auth is 0

password

Pointer to password string for authentication,
ignored if do_auth is 0

send file

1=send file attachment, 0=no file attachment

filename

filename of the file to send, valid only if
sen_file=1

callback

Pointer to callback function in user code to
receive completion and error event
notifications from HS SMTP Library. (See
section 3 for more details)

session_ref

User data associated with this session.This
parameter is passed to the callback function
in used code without modification

use_latinl

Integer flag which switches on the use of
is0-8859-1 encoding.

for characters from 0x7f to Oxff use escape
sequence ==<hex code>

Set this flag to TRUE when sending file
attachments. Set to false when sending mail
without attachments.

Note 1: Either server name or server IP address string can be supplied to the function. If srv_ip is
non NULL, srv_ip string shall be used to connect to SMTP server. If srv_ip is null, srv_name
string shall be used to resolve server IP address first before connecting to it.

long *session_handle - HS SMTP fills in the variable pointed to by this parameter with SMTP
session reference. Use this parameter to close a session with HsSmtpAbortMail if required.

Return values:

Value

Description

HS_SMTP_RC_OK

Success

HS SMTP_RC_NOTINIT HS SMTP Library not initialized

HS SMTP_RC INV_PAR Invalid parameters specified

HS SMTP_RC _NO_CTX No free contexts (Maximum 5 concurrent sessions
supported)

HS SMTP_RC NONAME Socket layer cannot resolve SMTP server name

HS SMTP_RC TCPCONNFAIL Socket layer failed to connect to SMTP server

Sample usage:

rc = HsSmtpSendMail(&m, &session_handle);

2.2.3.25 HsSmptAbortMail

Declaration:
int HsSSmptAbortMail(long session_handle);

Summary:
This function is used to abort current mail transfer already in progress. The function returns

immediately, but the clean mail session termination completes asynchronously and the result is
reported via event callback function.
Parameters:

long session_handle - SMTP session handle (returned with HsSmtpSendMail)

Return values:

Value Description

HS SMTP_RC OK Success
HS_SMTP_RC_NOTINIT HS SMTP Library not initialized
HS SMTP_RC INV_PAR Invalid parameters specified
HS SMTP_RC NOT OPEN mail session not open

Sample usage:

HsSmptAbortMail(session_handle);

2.2.3.3 HS SMTP to User Event Callback and Events

2.2.3.3.1 Event Callback Prototype

typedef int smtp__callback _t(void *session_ref, int ev, long argl, long arg2);

Parameter Description

*session_ref User data, passed unchanged from the call to HsSmtpSendMail
ev Event code (see event code table below)

Argl Parameter 1 (dependant on event code)

Arg2 Parameter 2 (dependant on event code)

2.2.3.3.2 Event Codes

Event

Argl

Arg?2

Description

HS_SMTP_USR_EV_DONE

Mail transfer
complete, mail has
been successfully
sent to SMTP
server and mail
session is
terminated

HS_SMTP_USR_EV_CLOSED

TCP session
closed by remote
peer

HS_SOCK_EV_CONN_FAILED

TCP connect
attempt failed

HS_SMTP_USR_EV_SRVERR

Unsigned char
*puffer
pointer to server

Int length
length of
server reply

Mail session closed
because SMTP
server returned

reply string string error. The error
string returned by
the server is
passed in
parameters argl
and arg2
HS SMTP_USR_EV_TIMEDOUT Unsigned char 0 Mail session closed
*error because current
Null terminated protocol operation
error string timed out. Argl
parameter has
pointer to error
string with
additional
information about
the timeout
condition.
HS SMTP_USR_EV_PROGRESS Integer number 0 Progress
from O to 100 indication,
representing parameter 1 has a
percentage of number from 1 to
transmitted 100, representing
message text percentage of
message text sent
so far.
HS_SMTP_USR_EV_PROGRESS _F | Integer number 0 Progress
from O to 100 indication,

representing
percentage of file
attachment
transmitted so far

parameter 1 has a
number from 1 to
100, representing
percentage of of
file attachment

transmitted so far.

HS_SMTP_USR_EV_GETNEXT

Pointer to
hs_smtp_mail_t
message structure

When a message
has been
successfully
transmitted to
server, the callback
function is called
with this primitive.
If the user
application wishes
to send the same
message to
another recipient, it
should set the new
*recv_addr in the
hs_smtp_mail_t
structure and
return TRUE. If the
user application
returns FALSE, HS
SMTP will exit the
mail session

2.2.4 HsPop3

2.2.4.1 Overview

HS POP3 implements the client side of Post Office Protocol Version 3 (POP3) over TCP socket
layer according to RFC 1939. Among other features, the library supports user authentication,
reception of basic internet headers and text, message deletion and statistics.

HS POP3 Library incorporates the necessary state machine, transparency procedures,
and server response processing required to comply to a simple and robust POP3
client implementation.

2.2.4.2 HsPop3 API

2.2.4.2.1 HsPopa3init

Declaration:
int HsPop3Init(hs_pop3_api_t *api);

Summary:
This function initialises HS POP3 Library. It must be called at initialisation, before any other

functions are called.

Calling HsPop3Init twice will return an error. You can call HsPop3Destroy first to deinitialise HS
Pop3 Library and then call HsPop3Init again

Parameters:
hs_pop3_api_t *api - Pointer to parameter structure, please see next section for details

Return values:
HS_POP3_RC_ALRINIT — HS POP3 Library already initialised
HS_POP3_RC_INV_PAR —invalid parameters specified
HS_POP3_RC_SOCKINIT_FAIL — socket layer initialisation failed
HS POP3 RC_OK - success

Sample usage:

api.start_timer = sock_timer_start;
api.stop_timer = sock_timer_stop;
api.event_cb = pop3_callback;

rc = HsPop3lInit(&api);

2.2.4.2.1.1 Initialisation Structure Definition (hs_pop3_api_t)

Field name Description

start_timer _t *start_timer; | Pointer function in user code used by HS POP3 to start a timer

Prototype:

long start_timer_t(unsigned long timeout_ms, void *arg,
timer_callback_t *cb);

Parameters:

Handle — POP3 session handle

timeout_ms — timeout in milliseconds

*cb — pointer to function in HS POP3 code that the user code
should call on timer expiry.

arg — argument that HS POP3 passed to start timer callback. This
argument must be passed back unchanged to timer expiry
callback.

Callback function prototype:
typedef void stop_timer_t(long timer_han);

timer_han —timer handle

Returns:
timer handle or NULL if timer start error

stop_timer _t *stop_timer | Pointer function in user code used by HS POP3 to stop a timer

Prototype
void stop_timer_t(long timer_handle);

Parameters:
timer_handle — timer handle (returned from call to start_timer)

event_callback_t Pointer function in user code used by HS POP3 to report
*event_cb operation results, status and errors.

2.2.4.2.2 HsPop3Destroy

Declaration:
int HsPop3Destroy(void);

Summary:
This function de-initialises HS POP3 Library and releases all used.

Parameters:
None

Return values:
HS_POP3_RC_OK - success, HS POP3 Library successfully de-initialised
HS_POP3_RC_NOTINIT — cannot destroy, HS POP3 Library not yet initialised

Sample usage:

HsPop3Destroy();

2.2.4.2.3 HsPop3GetMail

Declaration:
int HsPop3GetMail(hs_pop3_session_t *s, long *session_handle);

Summary:
This function initiates mail reception from POP3 server. It works as follows:

1) HS POP3 contacts POP3 server with login information

2) If login is authorised, HS POP3 checks to see if maibox has any messages

3) If mailbox is not empty, HS POP3 follows this procedure for each message until all messages
processed:

A) Get message id from server and report it to user application via
HS_POP3_USR_EV_MSGID event

B) If user application indicates via return of callback that it wants to receive this message, HS
POP3 receives
message header, parses header fields and passes it to application via
HS_POP3_USR_EV_DONE_MSGHDR event.

C) HS POP3 then receives the message body from the server block by block and each block’s
data is returned
to application via HS_POP3_USR_EV_DONE_MSGBLK event.

When message is fully received and all blocks have been returned to application, HS POP3
generates
HS_POP3_USR_EV_DONE_MSG event

D) If there are more messages to be received from the mail server, HS POP3 does to step A

E) When all messages are processed, HS POP3 calls event callback with
HS_POP3_USR_EV_DONE event
passing total number of messages in mailbox and number of received messages

Depending on parameters, HS POP3 can delete messages from the server after successful
reception..

Parameters:
hs_pop3_session_t *s - Pointer to session parameters structure:

srv_name — POP3 server name (Note 1)

username — POP3 username, 0 terminated

password — POP3 password, 0 terminated

srv_port - POP3 server port (usually 110)

delete_msgs — is TRUE, delete messages from server

user_data — user handle, not modified by HS POP3 and always passed back in event callback
function.

Note 1: Either server name or server IP address string can be supplied in the srv_name to the
function

long *session_handle - HS POP3 fills in the variable pointed to by this parameter with POP3
session reference. Use this parameter to close a session with HsPop3Abort if required.

Return values:
HS_POP3_RC_NOTINIT — HS POP3 Library not initialised

HS_POP3_RC_INV_PAR —invalid parameters specified

HS_POP3_RC_NOPASS - no password specified in parameters
HS_POP3_RC_NOUSER - no username specified in parameters
HS_POP3_RC_NO_CTX — maximum number of open HS POP3 sessions reached
HS POP3 _RC_NONAME - POP3 server name could not be resolved

HS POP3 RC_TCPCONNFAIL- TCP connection to server could not be established
HS POP3 RC_TIMERFAIL —timer start failure

HS POP3 RC_OK - success

Sample usage:

rc = HsPop3GetMail(&ss, &session_handle);

2.2.4.2.4 HsPop3Abort

Declaration:
Int HsPop3Abort(long session_handle);

Summary:
This function is used to abort current mail session in progress. HS POP3 library will discard

current message (if not fully received) free message memory and exit mail session cleanly via
POP3 QUIT command. This means that the session is not closed immediately, but only after
reception of a valid response to QUIT command or timeout.

Parameters:
long session_handle - POP3 session handle of the session to abort

Return values:
HS POP3 RC_OK - success
HS_POP3_RC_NOTINIT — HS POP3 Library not initialized
HS_POP3_RC_INV_PAR —invalid parameters specified

Sample usage:

HsPop3Abort(session_handle);

2.24.25 HsPop3GetErrStr

Declaration:
unsigned char *HsPop3GetErrStr (int rc);

Summary:
This function is used to convert integer HS POP3 return code into a readable string — error

description.

Parameters:
int rc - HS POP3 integer return code

Return values:
Pointer to zero terminated error string
NULL — error not found (not a valid return code)

Sample usage:

rc = HsPop3Abort(session_handle);
if (rc '= HS_POP3_RC_OK)

{

unsigned char s[200];
sprintf(s, "ERROR: HS POP3 ERROR (%0s)", HsPop3GetErrStr(rc));

color = RED;

SetDIlgltemText(dlg_main, IDC_STATIC_STATUS, s);

break;

2.2.4.3 HS POP3 to USER Event Callback and Events

2.2.4.3.1 Event Callback Prototype

typedef int event_callback_t(long handle, int ev, long argl, long arg2);

Parameter Description

handle User handle, the same as specified in call to HsPop3getMail in user_data
parameter of hs_pop3_session_t structure

ev Event code (see next section for list of event codes)

Argl Parameter 1, value depends on event

Arg2 Parameter 2, value depends on event

Returns:

True or False. For most events the return is insignificant and is not checked by HS POP3. Where
HS POP3 needs a specific return, it is clearly specified in this document

2.24.3.2 Events
Event Argl Arg?2 Description
HS POP3 USR_EV_MSGID Pointer to 0 User

message ID string,
zero terminated

application at
this point may

with maximum
length 71 bytes
(not including last
zero)

go through the
list of locally
stored
(previously
received)
messages to
see if it already
has a message
with the same
message id. If
the user wishes
to receive this
message, the

return from
callback
function must
be TRUE,
otherwise to
skip the
message return
FALSE

HS_POP3_USR_EV_DONE_MSGHDR

Pointer to
message header
structure received
and parsed by HS
POP3. The
message header
structure is
defined in
hs_pop3_msg_t

User
application
should store the
message
header of the
message which
is going now to
be received by
HS POP3

User must copy
the passed
structure
content into a
local structure.

HS POP3 shall
release the
internally
allocated
memory for the
structure
pointer on
return from
callback
function

HS_POP3_USR_EV_DONE_MSGBLK

Pointer to buffer
next block of
message data
received

Length of data
block received

Next block of
message data
received

User must copy
the passed
buffer content
into a local
message
storage (or
mailbox file).

HS POP3 shall
release the
internally
allocated
memory for the
buffer pointer
on return from
callback

function

HS_POP3_USR_EV_DONE_MSG

Current
message fully
received

HS_POP3_USR_EV_DONE

Long number of
messages
received

Mail session
complete

HS_POP3_USR_EV_CLOSED

0

Socket layer
closed TCP
connection. HS
POP3 will
release any
allocated
memory for a
message being
currently
received

HS_POP3_USR_EV_CONNFAIL

HS POP3 could
not connect to
POP3 server

HS_POP3_USR_EV_SRVERR

Unsigned char
pointer to server
reply string

Length of
server reply
string

Session closed
because of
POP3 error
response
received from
server

HS POP3 will
release any
allocated
memory for a
message being

currently
received
HS POP3 USR_EV_TIMEDOUT Unsigned char Length of Timed out

pointer to additional waiting for
additional information server
information string string response,
(about the context session closed.
in which timeout HS POP3 will
occurred) release any

allocated

memory for a
message being
currently
received

HS_POP3_USR_EV_PROGRESS1

HS POP3
reports number

of messages in
mailbox and
total size of
mailbox in
octets. This
event is
indicated once
per POP3
session

HS_POP3_USR_EV_PROGRESS2

Current message
number (long)

Number of
bytes received
so far (long)

current
receiving
message
number and
number of
bytes received
so far.

This event is
indicated for
each message
block received
until full
message is
received. This
event is
indicated for
each message
within the same
session. It can
be used to
indicated
individual
message
reception
progress.

HS_POP3_USR_EV_INTERR

Pointer to zero
terminated error
string

Internal error
occurred, the
TCP POP3
sessoin has
been closed
and mail
session context
de-allocated

2.2.4.3.3

Message structure (hs_pop3_msg _t)

Data Member

Description

unsigned char
from[HS_POP3_MAX_PATH];

FROM internet address, parsed out from
message header

unsigned char
date[HS_POP3_MAX_DATE];

DATE parsed out from message header

unsigned char SUBJECT parsed out from message header
subj[HS_POP3_MAX_SUBJ];

unsigned char Message ID string as received from POP3 server
msgid[HS_POP3_MAX_MSGID]; for that message
int hdrlen; Length of internet headers. The headers start

from the first byte of the message

DWORD dwMsgLen; Full message length including internet headers
and data

2.2.5 HsNtp
2.2.5.1 Overview

HS NTP implements the client side of Network Time Protocol (NTP) over UDP socket layer
according to RFC 1769 and RFC1305.

The library allows the user application to synchronize local time with the time of remote NTP
server.

HS NTP Library incorporates the necessary server response processing required to
comply to a simple implementation of NTP client

2.2.5.2 HsNtp API

2.2.5.2.1 HsNtplnit

Declaration:
int HsNtplnit (hs_ntp_api_t *api);;

Summary:
This function initialises HS NTP Library. It must be called at initialisation, before any other

functions are called

Calling HsNtplnit twice will return an error. You can call HsNtpDestroy first to deinitialise HS NTP
Library and then call HsNtplInit again.

Parameters:
hs_ntp_api_t *api - Pointer to parameter structure, please see next section for details

Return values:
HS_NTP_RC_ALRINIT — HS NTP Library already initialized
HS_NTP_RC_INV_PAR - invalid parameters specified
HS NTP_RC_OK - Success

Sample usage:

api.start_timer = start_timer;
api.stop_timer = stop_timer;
api.event_cb = ntp_callback;

rc = HsNtplnit(&api);

2.2.5.2.1.1 Initialisation Structure Definition (hs_ntp_api_t)

Field name

Description

start_timer _t
*start_timer;

Pointer function in user code used by HS NTP to start a timer

Prototype:
long start_timer_t(lunsigned long secs, timer_callback_t *callback);

Parameters:

secs — timeout in seconds

*callback — pointer to function in HS NTP code that the user code
should call on timer expiry.

Callback function prototype:
void timer_callback_t(void);

Returns:
timer handle or NULL if timer start error

stop_timer _t
*stop_timer

Pointer function in user code used by HS NTP to stop a timer

Prototype
void stop_timer_t(long timer_handle);

Parameters:
Timer_handle — timer handle (returned from call to start_timer)

event_callback t
*event cb

Pointer function in user code used by HS NTP to report operation
results, status and errors.

2.2.5.2.2 HsNtpDestroy

Declaration:

int HsNtpDestroy(void);

Summary:

This function de-initialises HS Ntp Library.

Parameters:
None

Return values:

HS_NTP_RC_OK - success, HS NTP Library successfully de-initialised
HS_NTP _RC_NOTINIT — cannot destroy, HS NTP Library not yet initialized

Sample usage:

HsNtpDestroy();

2.2.5.2.3 HsNtpGetErrStr

Declaration:
unsigned char *HsNtpGetErrStr (int rc);

Summary:
This function is used to convert integer HS NTP return code into a readable string — error

description.

Parameters:
int rc - HS NTP integer return code

Return values:
Pointer to zero terminated error string
NULL — error not found (not a valid return code)

Sample usage:

rc = (int)argl;
sprintf(s, "Invalid Server Reply: (rc=%d): %s", rc, HsNtpGetErrStr(rc));

2.25.2.4 HsNtpGetTime

Declaration:
int HsNtpGetTime(hs_ntp_session_t *s);

Summary:
This function initiates NTP time request / response session with a remote NTP server. This

function call is non-blocking. If the time request could be successfully sent, the function returns
with code HS_NTP_RC_OK. After HS NTP module receives and analyses time response from
NTP server it shall call the event callback function in user code with an appropriate event and
parameters to signal the completion of the operation.

*s parameter is a pointer to session structure in user code which contains settings for this time
request, such as server name or ip address and source UDP port number to use.

Parameters:
hs_ntp_session_t *s - Pointer to session parameters structure:

srv_name — NTP server name (Note 1)
srv_ip — NTP server IP address (Note 1)
source_port - UDP source port to use

user_data — user data associated with this session (user session reference) not modified by NTP
module

Note 1: Either server name or server IP address string can be supplied to the function. If srv_ip
length is not 0, srv_ip string shall be used to send request to NTP server. If srv_ip length is O,
srv_name string shall be used to resolve server IP address first before connecting to it.

Return values:

HS_NTP_RC_NOTINIT — HS NTP Library not initialised
HS_NTP_RC_INV_PAR - Invalid parameters specified

HS NTP_RC_NONAME — NTP server name could not be resolved

HS _NTP_RC_TIMERFAIL — Timer start failure
HS_NTP_RC_BUSY — Time request in progress, hew request cannot be started before it is

complete

HS_NTP_RC_UDP_SOCK_OPEN - Error opening UDP socket
HS_NTP_RC_UDP_SOCK_SEND - Error sending UDP packet

HS NTP_RC_OK - Success

Sample usage:

hs_ntp_session_t ss = {0};

GetDlgltemText(hDlg, IDC_EDIT_SRVNAME, ss.srv_name, (sizeof ss.srv_name) - 1);

GetDlgltemText(hDlg, IDC_EDIT_PORT, port_str, sizeof port_str);

ss.source_port = (unsigned short)atoi(port_str);

rc = HsNtpGetTime(&ss);

2.2.5.3 HS NTP to USER Event Callback and Events

2.2.5.3.1 Event Callback Prototype

typedef int event_callback_t(long handle, int ev, long argl, long arg2);

Parameter Description

user_handle User handle, the same as specified in call to HsNtpGetTime in user_data

parameter of hs_ntp_session_t structure

ev Event code (see next section for list of event codes)
Argl Parameter 1, value depends on event

Arg2 Parameter 2, value depends on event

Returns:

True or False. For most events the return is insignificant and is not checked by HS NTP. Where

HS NTP needs a specific return, it is clearly specified in this document

2.2.5.3.2 Events

Event Argl Arg?2 Description
HS NTP_USR_EV_SRVRESP Pointer to structure 0 Time request
hs_ntp_info_t. See details in completed

section 3.2.1 successfully
Most significant information is
offset in seconds required to

apply to local clock in order to
synchronize it to remote NTP

server.
HS_NTP_USR_EV_SRVRESPERR | HS_NTP_SRVERR_LEN — 0 Error occurred
invalid NTP reply length processing
NTP server
HS NTP_SRVERR_UNSYNC response, see
— NTP server time is not argl for

synchronized to reliable detailed error
source code

HS_NTP_SRVERR_MODE —

invalid mode
HS NTP_USR_EV_TIMEDOUT 0 0 Timed out
waiting for
server
response.

2.2.5.3.3

NTP time reply structure (hs_ntp_info_t)

Data Member

Description

T1

Time request sent by client (seconds, NTP timestamp) — informational
purpose only

T2 Time request received at server (seconds, NTP timestamp) — informational
purpose only

T3 Time reply sent by server (seconds, NTP timestamp) — informational
purpose only

T4 Time reply received at client (seconds, NTP timestamp) — informational

purpose only

offset_seconds

Calculated clock offset based on NTP reply in seconds. If application
wishes to synchronize local system time to NTP server time, it should add
Offset (in seconds) to local system time. Offset can take on both negative
and positive values.

offset_milliseconds

Fraction part of seconds of the offset_seconds, converted to milliseconds.
The application may adjust the local clock by this amount of milliseconds.
This value is always positive. If offset_seconds is negative, the application
can substract offset_milliseconds from current system time, if the
offset_seconds is positive, the application can add offset_milliseconds to
current system time

stl Value of T1 converted to SYSTEMTIME format
st2 Value of T2 converted to SYSTEMTIME format
st3 Value of T3 converted to SYSTEMTIME format

st4

Value of T4 converted to SYSTEMTIME format

2.2.6 HsDns

2.2.6.1 Overview

HsDns module implements client side of domain name resolution to an IP address. It is
implemented using a simple client server request response model. HsDns provides services to all
network level protocols.

2.2.6.2 HsDns API

2.2.6.2.1 HsDnslnit

Declaration:
extern int HsDnslInit(hsdns_cfg_t *cfg);

Summary:
This function initializes HsDns library and must be called once before any other functions are

called.

Currently HsDns is initialized from HsSock module when user calls HsSockiInit.

Parameters:
hsdns_cfg_t *cfg — pointer to structure containing configuration parameters.

Definition of hsdns_cfg_t structure

Data member Description

int cache_size Number of resolved DNS entries to keep in cache for fast lookup.

When a user call function HsDnsGetlpbyName, HsDns first
checks the cache of previously resolved DNS names to lookup
the IP address. If the requested name is not in cache, then
HsDns contacts DNS server and uses DNS resolution protocol to
obtain the IP address

int num_requests Number of concurrent DNS sessions to support.

unsigned long server_ip 32 bit DNS server ip address. If using static IP address, the user
may set this value to DNS IP address, otherwise if using DHCP,

set to 0. DNS IP address can be communicated to HsDns at the

time when it is obtained from DHCP server. In this case the DNS
IP address is set with function HsDnsSetParams.

hs _dns_timer_start t Timer start callback function pointer. HsDns will use this function
*timer_start when it needs to start a timer
Prototype:

typedef long hs_dns_timer_start_t(unsigned long timeout_ms,
void *arg, hs_dns_timer_cb_t *cb);

timeout_ms — timeout in milliseconds
arg — argument passed from HsDns

cb — User code must call this function pointer callback on timer

expiry

Timer expiry function prototype:

typedef void hs_dns_timer_cb_t(void *arg);

The timer_start function returns long timer handle

arg — same argument as passed to timer_start function

hs_dns_timer_stop_t
*timer_stop

Timer start callback function pointer. HsDns will use this function
when it needs to stop a timer

Prototype:
typedef void hs_dns_timer_stop_t(long timer_han);

timer_han — timer handle obtained with call to timer_start.

Return values:

HS_DNS_RC_BAD_PARAMS - Invalid parameter(s)
HS_DNS_RC_ALR_INIT — Library already initialized
HS DNS_RC_OK - Success

Sample usage:

dns_cfg.cache_size = 3;
dns_cfg.num_requests = 3;
dns_cfg.server_ip = dns_server_ip;
dns_cfg.timer_start = init->timer_start_fn;
dns_cfg.timer_stop = init->timer_stop_fn;

HsDnslnit(&dns_cfg);

2.2.6.2.2 HsDnsCleanUp

Declaration:

extern void HsDnsCleanUp(void);

Summary:

De-allocates resources and closes HsDns services.

Currently this function is called from HsSock module, when user calls HsSockCleanUp();

Parameters:
None

Return values:
None

Sample usage:

HsDnsCleanUp();

2.2.6.2.3 HsDnsSetParams

Declaration:
extern void HsDnsSetParams(hsdns_params_t *pPar);

Summary:
Sets HsDns configuration parameters. This function can be called at any time after HsDnslnit

function already has been called.

If DHCP is used, this function is currently called by HsSock module when HsDhcp modifies
HsSock that is has obtained IP parameters from DHCP server, including DNS server IP address.
HsSock sets new DNS server IP address in hsdns_params_t structure.

Parameters:
hsdns_params_t *pPar — parameter structure, defined as follows:

Data member Description

unsigned longserver_ip; DNS server ip address

Return values:
None

Sample usage:

The following function is part of HsSock module. HsSock module automatically handles obtaining
new IP parameters for HSTCPIPv4 stack using DHCP (if enabled). The code shown below is
HsDhcp callback function in HsSock code, which gets called when HsDhcp has obtained IP
parameters from DHCP server:

/*

* DHCP event callback

*/

static void hssock_dhcp_event_callback(int ev, long argl, long arg2)

{
hsip_params_t sPar = {0};
hs_tcp_params_t sTcpPar = {0},
hs_udp_params_t sUdpPar = {0};
hs_arp_params_t sArpPar = {0},
hsdns_params_t sDnsPar = {0};
char str[256];
char ipaddrstr[17] = {0},

hs_dhcp_update_t *pUpd;

switch (ev)

{

case HS_DHCP_EV_CFG_UPDATE:
pUpd = (hs_dhcp_update_t *)arg1;
if (IpUpd) break;

hssk.local_ip = pUpd->local_ip;
hssk.local_ip_valid = 1;

sPar.local_ip = hssk.local_ip;

sPar.local_ip_valid = hssk.local_ip_valid;
sPar.gateway_ip = pUpd->router_ip;
sPar.mask = pUpd->subnet_mask;
HslpSetParams(&sPar);

sTcpPar.local_ip = hssk.local_ip;
sUdpPar.local_ip = hssk.local_ip;
sArpPar.local_ip = hssk.local_ip;
sDnsPar.server_ip = pUpd->dns_ip;

HsUdpSetParams(&sUdpPar);
HsTcpSetParams(&sTcpPar);
HsArpSetParams(&sArpPar);

HsDnsSetParams(&sDnsPar);

HsSocklInetNtoa(hssk.local_ip, ipaddrstr);

sprintf(str, "Local IP address acquired: %s", ipaddrstr);
hssk.log_fn(str);

hssk.global_ev_fn(0, HS_SOCK_EV_DHCP_UPDATE, (long)pUpd, 0, 0, 0);
break;

case HS_DHCP_EV_TIMEOUT:
case HS_DHCP_EV_ERROR:

}
2.26.24

Declaration:

hssk.local_ip_valid = 0;
hssk.local_ip = 0;

sPar.local_ip = hssk.local_ip;
sPar.local_ip_valid = hssk.local_ip_valid;
HslpSetParams(&sPar);

sTcpPar.local_ip = hssk.local_ip;
sUdpPar.local_ip = hssk.local_ip;
sArpPar.local_ip = hssk.local_ip;

HsUdpSetParams(&sUdpPar);
HsTcpSetParams(&sTcpPar);
HsArpSetParams(&sArpPar);

hssk.log_fn("Lost of failed to acquire local IP address");
break;

HsDnsGetlpbyName

extern int HsDnsGetlpbyName(unsigned char *name, unsigned long *padre);

Summary:

Various application level protocol libraries of HSTCPIPv4 use this function to resolve
DNS name to the IP address. It can also be used from any user application. HsDns
will first check internal cache to try to find IP address corresponding to requested
name. If name entry is found in internal cache, HsDnsGetlpbyName returns

immediately with success. If entry not found in cache, HsDns will contact DNS
server. In this case, HsDnsGetlpbyName returns HS_DNS_RC_PENDING. The caller
must allow sufficient time for HsDns to receive reply from DNS server and then call
HsDnsGetlpbyName again (This can be achieved using a timer, for example 500 ms).

On second call to HsDnsGetlpbyName, HsDns would have received DNS server reply
for name request and would have put it in internal cache, so if request was
successful, HsDnsGetlpbyName would return IP address for name entry immediately
from cache.

Parameters:
*name — pointer to null terminated string containing DNS name to resolve
*ipaddr — pointer to 32 bit unsigned integer to receive IP address

Return values:
HS_DNS_RC_NOT_INIT — Library not initialized
HS_DNS_RC_OK — IP address obtained, copied into *ipaddr
HS_DNS_RC_BAD_PARAMS — invalid parameter(s)
HS_DNS_RC_NO_MEM — no memory for new request
HS_DNS_RC_FAIL — HsDns failed to open UDP session for new request or timer
failure
HS_DNS_RC_PENDING — New DNS request has been initiated, call back later to
check result (see summary description above)

Sample usage:

dns_rc = HsDnsGetlpbyName(dest_host, &addr);

2.2.7 HsDhcp

2.2.7.1 Overview

HsDhcp module implements client side of Dynamic Host Configuration Protocol (DHCP)
according to RFC 2131. HsSock module updates all relevant components of HSTCPIPv4 stack
with new network parameters received from HsDhcp.

Supported network parameters include
IP address,
Router IP address,
Network mask,
DNS server IP address.

HsDhcp functions include:
Requesting network parameters from a DHCP server
Communicating new IP parameters to user of DHCP (HsSock)
IP lease management, renewal, re-binding and release

2.2.7.2 HsDhcp API

2.2.7.2.1 HsDhcplnit

Declaration:
extern int HsDhcplnit(hsdhcp_init_t *init);

Summary:
Initializes HsDhcp library. This function must be called before any other functions of

HsDhcp are called.

Parameters:
hsdhcp_init_t *init — initialization structure defined as follows:

Data member Description
unsigned char MacAddr[6]; Local Ethernet MAC address
hs_dhcp_event_fn_t *event_fn Event callback function pointer, defined as

typedef void hs_dhcp_event_fn_t(int ev, long arg1, long arg2);

Possible event codes and arguments are described in the
following section(s).

unsigned long server_ip 32 bit DNS server ip address. If using static IP address, the
user may set this value to DNS IP address, otherwise if using
DHCP, set to 0. DNS IP address can be communicated to
HsDns at the time when it is obtained from DHCP server. In
this case the DNS IP address is set with function
HsDnsSetParams.

hs_dhcp_timer_start_t
*timer_start

Timer start callback function pointer. HsDhcp will use this
function when it needs to start a timer

Prototype:
typedef long hs_dhcp_timer_start_t(unsigned long
timeout_ms, void *arg, hs_dhcp_timer_cb_t *cb);

timeout_ms — timeout in milliseconds
arg — argument passed from HsDhcp

cb — User code must call this function pointer callback on
timer expiry

Timer expiry function prototype:

typedef void hs_dhcp_timer_cb_t(void *arg);

The timer_start function returns long timer handle

arg — same argument as passed to timer_start function

hs_dhcp_timer_stop_t
*timer_stop

Timer start callback function pointer. HsDhcp will use this
function when it needs to stop a timer

Prototype:
typedef void hs_dhcp_timer_stop_t(long timer_han);

timer_han — timer handle obtained with call to timer_start.

hs_dhcp_get_ticks_fn_t
*get_rand32

Pointer to callback function used by HsDhcp when it needs to

generate a 32 bit random number.
Prototype:
typedef unsigned long hs_dhcp_get_ticks_fn_t(void);

Returns: 32 bit pseudo random number.

hs_dhcp_log_fn_t *log_fn

Pointer to callback function used by HsDhcp to log debug
events.

Prototype:
typedef void hs_dhcp_log_fn_t(char *str);

str — string to be printed or put into event log

Return values:

HS_DHCP_RC_ALR_INIT — Library already initialized
HS_DHCP_RC_BAD_PARAM — Invalid parameter(s)
HS_DHCP_RC_OK — HsDhcp initialized successfully

Sample usage:

hssk.dhcp_client = init->dhcp_client;
if (init->dhcp_client)

{
hssk.local_ip_valid = 0;
dhcp_init.event_fn = hssock_dhcp_event_callback;
dhcp_init.get_rand32 = init->get_rand32;
memcpy(dhcp_init.MacAddr, init->local_eth, 6);
dhcp_init.timer_start = init->timer_start_fn;
dhcp_init.timer_stop = init->timer_stop_fn;
dhcp_init.log_fn = init->log_fn;
rc = HsDhcplnit(&dhcp_init);
if (rc '= HS_DHCP_RC_OK)

return HS_SOCK_RC_FAIL;
}

2.2.7.2.2 HsDhcpCleanUp

Declaration:
extern void HsDhcpCleanUp(void);

Summary:
De-allocates resources and closes HsDhcp library. Currently this function is called

from HsSock library when user calls HsSockCleanUp();

Parameters:
None

Return values:
None

Sample usage:

HsDhcpCleanUp();

2.2.7.2.3 HsDhcpRenew

Declaration:
extern int HsDhcpRenew(void);

Summary:
Initiates IP address renew procedure. HsDhcp requests IP address lease from DHCP

server and obtains IP parameters. When IP lease is obtained it calls event callback
function and communicates asynchronously new IP parameters to caller.

If the use of DHCP is enabled, HsDhcpRenew is called by HsSock library at the end of
HsSocklInit function when the initialization of various components of HSTCPIPv4 stack
is otherwise complete.

Parameters:
None

Return values:
HS_DHCP_RC_NOT_INIT — Library not initialized
HS DHCP_RC_OK — IP renewal initiated. The result shall be notified to caller
asynchronously via event callback.

Sample usage:

rc = HsDhcpRenew();

2.2.7.2.4 HsDhcpRelease

Declaration:
extern int HsDhcpRelease(void);

Summary:
Releases IP address used by HSTCPIPv4 stack.

Parameters:
None

Return values:
HS_DHCP_RC_NOT_INIT — Library not initialized
HS_DHCP_RC_OK — IP address released. This IP address must not be used by
HSTCPIPv4 stack from this point on.

Sample usage:

HsDhcpRelease();

2.2.7.3 HsDhcp Events passed to event callback

Event Description

HS_DHCP_EV_CFG_UPDATE IP parameters update. Happens in 2 cases:
1) New IP lease obtained from DHCP server
2) IP lease expired and failed to renew lease

Argl is a pointer to structure hs_dhcp_update_t defined as:

unsigned long local_ip; /l'local IP address
unsigned long dns_ip; /I dns server ip address
unsigned long router_ip; /I gateway ip address

unsigned long subnet_mask; // subnet mask

unsigned long lease_time; // lease time in seconds
unsigned long renew_time; // renew time in seconds
unsigned long rebind_time; // rebind time in seconds

Arg2=0
HS_DHCP_EV_TIMEOUT Dhcp operation timed out, failed to obtain IP parameters
Argl =0

Arg2=0

HS_DHCP_EV_TIMEOUT

Internal error, this could indicate error trying to open UDP
socket or DHCP server rejected DHCP request with NAK

Argl =0
Arg2 =0

2.3 Session Layer API

2.3.1 HsSock

2.3.1.1 Overview

HsSock module provides a common API interface to network level protocols fusing
UDP and TCP protocols. The services of HsSock are used by HsSmtp, HsPop3, HsFtp,
HsTftp, HsNtp, HsDns, HsDhcp. HsSock interface can also be used directly from a
user application. The function of HsSock module is session management

2.3.1.2 HsSock API

2.3.1.2.1 HsSocklInit

Declaration:

extern int HsSocklnit(hssock_init_t *init);

Summary:

This function initializes HsSock library and must be called first, before any other
functions of HsSock are called. Internally HsSocklInit will initialize various
components of HSTCPIPv4: HsUdp, HsTcp, Hslp, HsDhcp, HsDns.

Parameters:

hssock_init_t *init — initialization structure defined as follows:

Variable

Description

unsigned char *local_eth;

Pointer to 6 byte buffer representing local
Ethernet MAC address

int dhcp_client

O=use static IP configuration, 1=Use DHCP
client to obtain IP parameters

unsigned char *source_ip_str;

local interface IP address string in dotted
format, zero terminated (e.g “192.168.1.1")
Set to “0.0.0.0” if using DHCP.

unsigned char *gateway_ip_str;

Pointer to Gateway router IP address string in
dotted format, zero terminated (e.g
“192.168.1.9”)

Set to “0.0.0.0” if using DHCP.

unsigned char *network_mask;

Pointer to Local network mask string in dotted
format, zero terminated (e.g “255.255.255.07)
Set to “0.0.0.0” if using DHCP.

unsigned char*dns_server_ip_str;

Pointer to DNS server IP address in dotted
format, zero terminated (e.g “192.168.1.9”)
Set to “0.0.0.0” if using DHCP.

hs_sock_event_fn_t *global_ev_fn;

Pointer to global socket event function
callback.

This function shall be called by HsSock when it
needs to communicate events to application
that are not related to specific socket session,
such as DHCP updates.

Prototype:
typedef long hs_sock_event_fn_t(long
user_handle, int ev, long argl, long arg2, long

arg3, long arg4);

Possible Event code and arguments are
specified in HsSock Events section.

hs_sock_ timer_start_t
*timer_start_fn

Start timer function callback. HsSock calls this
function pointer when it needs to start a timer.

Prototype:
typedef long hs_sock_timer_start_t(unsigned
long timeout_ms, void *arg,

hs_sock_timer_cb_t *cb);

timeout_ms — timeout in milliseconds
arg — argument passed by HsSock

cb — callback function to be called when timer
expires.

Returns timer handle

Callback function prototype for timer expiry:
typedef void hs_sock_timer_cb_t(void *arg);

arg — same argument as passed to
timer_start_fn

hs_sock_timer_stop_t
*timer_stop_fn;

Stop timer function callback HsSock calls this
function pointer when it needs to stop a timer.

Prototype:
typedef void hs_sock_timer_stop_t(long
timer_han);

timer_han — timer handle

hs_sock _drv_tx fn t
*drv_tx_fn;

Ethernet frame transmit callback function
pointer.

HsSock calls this function when it needs to
transmit an Ethernet frame.

Prototype:

typedef void hs_sock_drv_tx_fn_t(unsigned
char *pkt, int len);

pkt — buffer to packet to be transmitted

len — length of buffer in bytes

hs_sock_get_ticks_fn_t Pointer to callback function used to get
*get_ticks_fn; number of millisecond ticks since bootup
Prototype:

typedef unsigned long
hs_sock_get_ticks_fn_t(void);

Returns number of millisecond ticks since
bootup.

unsigned long seed; 32 Bit initial seed to be used for random
number generation.

hsicmp_event_fn_t Pointer to ICMP event callback function.

*icmp_event_fn; If user application uses ICMP interface in
Hslcmp module to ping remote hosts, this
function gets called to report ICMP ping
related events.

Prototype:
typedef long hsicmp_event_fn_t(int ev, long
argl, long arg?);

ev —event code
argl, arg2 — arguments. See section HsSock
events for detailed specification.

Return values:
HS SOCK_ RC_OK — Success, HsSock and HsTCPIPv4 stack initialized
HS_SOCK_RC_PARAM — Invalid parameters
HS SOCK_ RC_FAIL — Initialization failed
HS_SOCK_RC_SOCKINIT_FAILED - Initialization failed

Sample usage:

sockinit.dhcp_client = (IsDIgButtonChecked(hDlg, IDC_CHECK_DHCP) == BST_CHECKED) ? 1: 0;

if (sockinit.dhcp_client)
strcpy(source_ipaddr, "0.0.0.0");

sockinit.source_ip_str = source_ipaddr;

sockinit.gateway_ip_str = gw_ipaddr;
sockinit.dns_server_ip_str = dns_ipaddr;
sockinit.network_mask = mask;
sockinit.local_eth = ethaddr;
sockinit.timer_start_fn = sock_timer_start;
sockinit.timer_stop_fn = sock_timer_stop;
sockinit.drv_tx_fn = sock_drv_tx_fn;
sockinit.log_fn = write_event;
sockinit.global_ev_fn = hs_sock_global_event;

sockinit.get_ticks_fn = hs_sock_get_ticks;
sockinit.seed = (unsigned long)GetTickCount();
sockinit.get_rand32 = hs_sock_get_rand32;

sockinit.icmp_event_fn = icmp_event_callback;

rc = HsSockInit(&sockinit);
if (rc = HS_SOCK_RC_OK)

{
sprintf(str, "HsSockinit failed, rc=%s", HsSockGetRcString(rc));
write_event(str);
break;

}

write_event("HSTCPIPv4 Initialized");

2.3.1.2.2 HsSockCleanUp

Declaration:
HsSockCleanUp(void);

Summary:
De-initializes HsSock module and HsTCPIPv4 stack.

Parameters:
None

Return values:
None

Sample usage:

HsSockCleanUp();

2.3.1.2.3 HsSockUdpOpen

Declaration:
extern int HsSockUdpOpen(
long usr_handle, // user supplied handle
hs_sock event fn_t *event fn, // event callback function
unsigned short source_port, // source port
long *sock_handle);// returned socket layer handle;
Summary:

Opens UDP socket session. This call enables an application to both start receiving
UDP data sent from remote hosts to port source_port and to send UDP data to
remote hosts from port source_port

Parameters:
usr_handle — application handle to associate with new socket session
event_fn — event callback function to be called by HsSock with socket related events.

Callback function prototype:
typedef long hs_sock_event_fn_t(long user_handle, int ev, long argl, long arg2,
long arg3, long arg4);

See HsSock Events for detailed specification.

source_port — local port number. To have HsSock allocate local port number
dynamically, set to O.

*sock_handle — pointer to variable of type long to receive UDP socket session handle

Return values:
HS_SOCK_RC_NOT_INIT — Library not initialized
HS_SOCK_RC_PARAM — Invalid parameter(s)
HS_SOCK_RC_BIND_FAILED — A socket session with specified port number
already exists, failed to create new session.
HS_SOCK_RC_NO_MEM — No memory for new socket session. Maximum
number of concurrent sessions reached. Currently HsSock supports maximum
11 concurrent sessions.
HS SOCK_RC_OK - Success

Sample usage:

The following code is an example how HsSockUdpOpen is used by HsDns:

I/ Initialize state
static void hs_dhcp_st_init(int ev, long argl, long arg2, long arg3)
{

intrc;

unsigned long timeout_ms;

switch (ev)

{
case HS_DHCP_FSM_EV_DISCOVER:
dhep.xid = dhcp.api.get_rand32();

dhep.local_ip =0;
dhcp.server_ip = 0;
dhep.tmp_my_ip=0;
dhcp.tmp_server_ip =0;

rc = HsSockUdpOpen((long)dhcp.xid, hs_udp_sock_event, HS_ DHCP_CPORT, &dhcp.sock_han);

if (rc = HS_SOCK_RC_OK)

{
dhcp.api.event_fn(HS_DHCP_EV_ERROR, 0, 0);
break;

hs_dhcp_send_discover();

hs_dhcp_change_state(hs_dhcp_st_select);

dhcp.retry_secs = 4;

timeout_ms = (unsigned long)(get_random_between(
(unsigned short)(dhcp.retry_secs-1),
(unsigned short)(dhcp.retry_secs+1)) * 1000);

hs_dhcp_start_timer(&dhcp.retx_timer, timeout_ms, HS_DHCP_FSM_EV_T0);
break;

default:
break;

2.3.1.2.4 HsSockTcpConnect

Declaration:
int HsSockTcpConnect(

long usr_handle, // user handle

hs_sock event fn_t *event_fn, // socket event callback

unsigned char *dest_ip, // remote ip address to connect to

unsigned short dest_port, // remote port

long *sock_handle); // socket handle returned;
Summary:

This function is used to initiate outgoing TCP connection to remote host.

This function is non-blocking and returns immediately after validation of parameters
and internal conditions. It initiates TCP connection. The actual result of operation is
reported asynchronously via event callback (*event_fn). See event specification in
section HsSock Events.

Parameters:
usr_handle — user handle to associate with new socket session

*event_fn — socket event callback. Defined as:
typedef long hs_sock_event_fn_t(long user_handle, int ev, long argl, long arg2,
long arg3, long arg4); See detailed description of events in section HsSock Events.

*dest_ip — null terminated string representing remote IP address to connect to in
dotted IP format (e.g. “192.168.1.3”)

dest_port — remote port to connect to
*sock_handle — long variable that receives socket session handle
Return values:

HS_SOCK_RC_NOT_INIT — Library not initialized
HS_SOCK_RC_PARAM — Invalid parameter(s)

HS_SOCK_RC_FAIL — Internal error : HsTcpConnect failed immediately.
HS_SOCK_RC_NO_MEM — No memory for new socket session. Maximum
number of concurrent sessions reached. Currently HsSock supports maximum
11 concurrent sessions.

HS SOCK_ RC_OK — Success, connection initiated

Sample usage:

rc = HsSockTcpConnect((long)pSession, sock_event_fn_tcp, pSession->remote_ip_str,
pSession->remote_port, &pSession->sock_han);

if (rc 1= HS_SOCK_RC_OK)

{
sprintf(str, "HsSockTcpConnect failed rc=%s", HsSockGetRcString(rc));

write_event(str);
free_session(pSession);
return;

}
LvAddSession(pSession);

write_event("HsSockTcpConnect initiated OK.");

2.3.1.25 HsSockTcpListen

Declaration:
int HsSockTcpListen(

unsigned short port, // port to listen on

long user_handle, // user handle

hs_sock event fn_t *event_fn, // socket event callback

long *listen_sock_han); // listen socket handle returned;
Summary:

This function is used to start listening for incoming TCP connections on specified local
port.

Parameters:
port — local port number to listen for incoming TCP connections on
user_handle — user handle to associate with a listening socket

*event_fn - socket event callback. Defined as:
typedef long hs_sock_event_fn_t(long user_handle, int ev, long argl, long arg2,
long arg3, long arg4); See detailed description of events in section HsSock Events.

*listen_sock_han — listening socket handle returned

Return values:
HS_SOCK_RC_NOT_INIT — Library not initialized
HS_SOCK_RC_PARAM — Invalid parameter(s)
HS_SOCK_RC_FAIL — Internal error : HsTcpListen failed immediately.

HS_SOCK_RC_NO_MEM — No memory for listening socket session. Maximum
number of concurrent sessions reached. Currently HsSock supports maximum
11 concurrent sessions.

HS_SOCK_RC_OK — Success, started listening for incoming connections

Sample usage:

rc = HsSockTcpListen(local_port, (long)local_port, sock_event_fn_tcp, &listen_sock_han);
if (rc 1= HS_SOCK_RC_OK)
{
sprintf(str, "HsSockTcpListen failed rc=%s", HsSockGetRcString(rc));
write_event(str);
return;

}

sprintf(str, "HsSockTcpListen OK. Listening on local port %u", local_port);
write_event(str);

2.3.1.2.6 HsSockClose

Declaration:
extern int HsSockClose(long sock_handle);

Summary:
This function is used to close an existing socket session.

Parameters:
sock handle — socket session handle

Return values:
HS_SOCK_RC_NOT_INIT — Library not initialized
HS_SOCK_RC_PARAM — Invalid parameter(s)
HS SOCK RC_OK — Success, session closed

Sample usage:

HsSockClose(handle);

2.3.1.2.7 HsSockUdpSendto

Declaration:
int HsSockUdpSendto(

long hssk_handle, // socket layer handle

unsigned long dest_ip, // remote end IP address

unsigned short int dest_port, // remote UDP port number

unsigned char *puffer, // payload data

unsigned short int length); // payload data length
Summary:

This function is used to send data using UDP protocol on UDP socket session.

Parameters:
hssk_handle — socket session handle obtained after call to HsSockUdpOpen.

dest_ip — 32 bit remote IP address to send data to

dest_port — destination port to send data to

buffer — data buffer to send

length — length of data buffer in bytes

Return values:
HS_SOCK_RC_NOT_INIT — Library not initialized
HS_SOCK_RC_PARAM — Invalid parameter(s)
HS_SOCK_RC_FAIL — HsUdpSendPacket failed immediately.

HS_SOCK_RC_OK — Success, Udp packet containing data has been sent to
Hslp module for transmission

Sample usage:

HsSockUdpSendto(pCtx->sock_handle, pCtx->dest_ip, pCtx->dcid, pCtx->pPkt, pCtx->pktlen);

2.3.1.2.8 HsSockTcpSend

Declaration:
int HsSockTcpSend(

long hssk_handle, // socket layer handle

unsigned char *packet_buf, // packet data

int length, // packet data length

int *txed_len); // bytes actually transmitted;
Summary:

This function is used to send data over established TCP socket session.

Parameters:
hssk _handle — socket handle

packet_buf — data buffer to send
length — length of data buffer to send in bytes
*txed_len — pointer to integer variable that receives count of bytes actually sent.

Return values:
HS_SOCK_RC_NOT_INIT — Library not initialized
HS_SOCK_RC_PARAM — Invalid parameter(s)
HS SOCK_ RC_FAIL — Internal error occurred
HS_SOCK_RC_OK — Success, data has been buffered by TCP for transmission.
HS_SOCK_RC_SEND_PENDING — TCP session transmit queue is full. User
must attempt sending data later when TCP is able to accept more data for
transmission.

Sample usage:

rc = HsSockTcpSend(pSession->sock_han, buffer, len, &txed_len);

sprintf(str, "HsSockTcpSend rc=%s", HsSockGetRcString(rc));
write_event(str);

2.3.1.2.9 HsSocklInetAddr

Declaration:
extern int HsSocklnetAddr(unsigned char *cp, unsigned long *addr);

Summary:
This function converts an IP address string in dotted IP format to 32 bit IP address

Parameters:
*cp — IP address string
*addr — pointer to 32 bit integer to receive IP address

Return values:
1 = conversion successful
0 = conversion failed, the string is not a valid IP address string.

Sample usage:

if ({HsSockInetAddr(ntp.s.srv_ip, &addr))
{

/I error
return;

}
2.3.1.2.10 HsSocklInetNtoa

Declaration:
extern void HsSocklnetNtoa(unsigned long ipl, unsigned char *ip_addr);

Summary:
This function converts 32 bit unsigned integer IP address into zero terminated IP

address string in dotted IP format. This function shall terminate the resulting string
with zero byte.

Parameters:
ipl — 32 bit unsigned integer ip address

*ip_addr — pointer to buffer to receive IP address string. The buffer must be at least
16 bytes long.

Return values:
None

Sample usage:

unsigned char str[16];

HsSockInetNtoa(p->local_ip, str);

2.3.1.2.11 HsSockGetRcString

Declaration:
extern unsigned char *HsSockGetRcString(int rc);

Summary:
This function returns a descriptive string corresponding to HsSock return code

Parameters:
rc — HsSock return code

Return values:

A string describing error code

Sample usage:

rc = HsSocklnit(&sockinit);
if (rc I= HS_SOCK_RC_OK)

{
sprintf(str, "HsSocklnit failed, rc=%s", HsSockGetRcString(rc));
write_event(str);
return;

}

2.3.1.3 HsSock Events

Event

Description

HS SOCK_EV_DATA Data received on a socket session.

UDP sockets:

Argl = pointer to data buffer received.

Arg2 = length of data received in bytes

Arg3 = Remote port number buffer came from

Arg4 = Remote IP address (32 bit) data buffer came
from

HsUdp uses it own internal buffer to receive data into
and it passes pointer to this buffer in Argl.

User application must NOT free this buffer, it should
copy data into a different buffer or process buffer data
and return

TCP sockets:
Argl = pointer to data buffer received
Arg?2 = length of data received in bytes

Arg3=0
Argd =0

HsSock uses internal buffer to receive data from TCP.
User application must NOT free this buffer, it should
copy data into a different buffer or process buffer data
and return

HS_SOCK_EV_CLOSED

Socket session closed by network

User application should consider socket session
closed. After callback function returns HsSock releases
socket session context.

Application must not send any data from this point to
this socket

Application must not close this socket as it has already
been internally closed by HsSock

Argl, Arg2, Arg3, Arg4 all zero

HS_SOCK_EV_CONNECTED

TCP outgoing socket connected

Argl, Arg2, Arg3, Arg4 all zero

HS_SOCK_EV_ACCEPTED

TCP incoming connection has come in from remote
host. The user application can instruct HsSock to
accept or reject it.

To accept new session:

Return a non zero user application handle.

To reject new session:

Return O
Arguments:

Arg1: listening socket user handle, same as passed to
HsSockTcpListen

Arg2: remote port TCP connection came from

Arg3: remote IP address TCP connection came from
(32 bit integer)

Arg4: local port TCP connection came to

HS_SOCK_EV_CONN_FAILED

TCP connect attempt failed

Argl, Arg2, Arg3, Arg4 all zero

HS_SOCK_EV_DHCP_UPDATE

IP parameters acquired / changed by DHCP module

HsSock has already configured all relevant HSTCPIPv4
components with new IP parameters. The application
may also use the data in this event to update for
example to update IP address in the GUI or print event
showing has new IP address has been acquired.

Argl points to structure hs_dhcp_update_t defined as
follows:

/I update event data

typedef struct
unsigned long local_ip; I/ local IP address
unsigned long dns_ip; /I dns server ip address

unsigned long router_ip; /I gateway ip address
unsigned long subnet_mask; // subnet mask
unsigned long lease_time; // lease time in seconds
unsigned long renew_time; // renew time in seconds
unsigned long rebind_time; // rebind time in seconds
} hs_dhcp_update_t;

Arg2, Arg3, Arg4 all zero

2.3.1.4 ICMP Event Callback Events

Event

Description

HS_ICMP_EV_PING_TIMEOUT

ICMP echo request timed out
Argl= icmp sequence number
Arg2 =0

HS_ICMP_EV_PING_SENT

ICMP echo request sent
Argl= icmp sequence number
Arg2 =0

HS_ICMP_EV_PING_REPLY

ICMP echo reply received
Argl= icmp sequence number
Arg2 =0

HS_ICMP_EV_PING_FINISHED

Hslcmp finished ping sequence:

Argl= number of ping requests sent
Arg2 = number of ping replies received

2.4 Transport Layer API

2.4.1 HsTcp

2.4.1.1 Overview

HsTcp module implements TCP (Transport Control Protocol) as per RFC 793. It is the
most complex part of HSTCPIPv4 suite and is responsible for many functions, such
as:

= Incoming and outgoing connection establishment / connection management,
selection of unique initial sequence numbers,

= TCP options negotiation

= Reliable data transmission, error detection, re-transmissions

= Flow control, congestion control

2.4.1.2 HsTcp API

24.1.2.1 HsTcplnit

Declaration:
extern int HsTcplnit(hstcp_init_t *init);

Summary:
This function initializes HsTcp library. It must be called once before any other

functions of HsTcp are called

Parameters:
hstcp_init_t *init — initialization structure defined as follows:

Variable Description

unsigned long local_ip; Local IP address. Set to 0 is DHCP is used

int max_sessions; Maximum number of concurrent TCP sessions required
to support

unsigned long max_retrans_timeout; Maximum retransmission timeout value in milliseconds

unsigned long min_retrans_timeout; Minimum retransmission timeout value in milliseconds

unsigned short data_tx_attempts; Maximum number of data retransmissions

unsigned long connect_timeout; TCP SYN retransmission timeout in milliseconds

unsigned long wait_state_timeout; Time to wait in wait state before releasing TCP context
(in milliseconds

hs_tcp_get_ticks_fn_t *get_ticks_fn; Pointer to function callback to get number of millisecond

ticks since bootup

Prototype:
typedef unsigned long hs_tcp_get_ticks_fn_t(void);

Returns number of milliseconds since bootup.

unsigned long seed; 32 bit seed value to be used for random number
generation

hs_tcp_timer_start_t *start_timer; Pointer to function callback to start a timer

HsTcp calls this function whenever it needs to start a
timer.

Prototype:

typedef long hs_tcp_timer_start_t(unsigned long
timeout_ms, void *arg, hs_tcp_timer_cb_t *cb);

timeout_ms — timeout in milliseconds
arg — argument passed in by HsTcp

cb — timer expiry callback, define as:
typedef void hs_tcp_timer_cb_t(void *arg);

arg — argument same as passed to start_timer

Returns timer handle

hs_tcp_timer_stop_t

*stop_timer;

Pointer to function callback to stop a timer
HsTcp calls this function to stop a timer.

Prototype:
typedef void hs_tcp_timer_stop_t(long timer_han);

timer_han — timer handle as returned by start_timer.

hs_tcp_get_buf t

*get_buffer;

Pointer to function callback to allocate a buffer for
reception of TCP segment data

HsTcp calls this function whenever it needs a data buffer
to copy incoming data arrived on TCP connection into.

Prototype:

typedef unsigned char *hs_tcp_get_buf_t(long
user_handle, unsigned short int length);

user_handle — user handle associated with TCP session.
Length — number of bytes required in buffer

Returns buffer pointer or NULL.

HsTcp does not free this buffer.

Caller may free this buffer after data has been delivered
to user via event callback.

hs_tcp_log_fn_t

*log_fn;

Pointer to function callback to log debug events

Prototype:
typedef void hs_tcp_log_fn_t(char *str);

str — string to print or put into event log

unsigned short int txq_size;

Size of transmit queue for data accepted from user of
TCP for transmission in bytes

Return values:

HS_TCP_RC_ALR_INIT — Library already initialized
HS_TCP_RC_BAD_PARAM — Invalid parameters
HS_TCP_RC_NO_MEM — not enough memory

HS TCP_RC_OK - success

Sample usage:

tcp_init.local_ip = hssk.local_ip;
tcp_init.max_sessions = HSSOCK_MAX;
tcp_init.get_ticks_fn = init->get_ticks_fn;
tcp_init.seed = init->seed;
tcp_init.start_timer = init->timer_start_fn;
tcp_init.stop_timer = init->timer_stop_fn;
tcp_init.get_buffer = tcp_get_buf;
tcp_init.log_fn = init->log_fn;
tcp_init.txq_size = 4096;

rc = HsTcplnit(&tcp_init);

2.4.1.2.2 HsTcpSetParams

Declaration:
extern void HsTcpSetParams(hs_tcp_params_t *pParams);

Summary:
This function sets TCP/IP parameters at run time. Currently used to update TCP with

a new local IP address after it has been obtained from DHCP server.

Parameters:
hs_tcp_params_t *pParams — pointer to parameter structure, defined as:

Variable Description

unsigned longlocal_ip; Local IP address

Return values:
None

Sample usage:

hs_tcp_params_t sPar = {0};
sPar.local_ip = new_ip;

HsTcpSetParams(&sPar);

2.4.1.2.3 HsTcpCleanUp

Declaration:
extern void HsTcpCleanUp(void);

Summary:
This function is used to de-initialize HsTcp library.

Parameters:
None

Return values:
None

Sample usage:

HsTcpCleanUp();

24.1.24 HsTcpConnect

Declaration:

extern
int HsTcpConnect(
long usr_handle, // user handle
unsigned long dest_ip, // destination IP address to connect to

unsigned short source_port, // source port

unsigned short dest_port, // destination port
hs_tcp_event_fn_t *event_callback, // event callback
long *tcp_handle); // TCP new session handle;

Summary:
This function is used to initiate outgoing TCP connection to remote host. The result of

connection establishment operation is reported asynchronously via event callback.
See section HsTcp Events

Parameters:
usr_handle — user handle to associate with TCP connection.

dest_ip — destination IP address
source_port — local port
dest_port - destination port

*event_callback — pointer to event callback function to be called to communicate
network events for this connection

*tcp_handle — pointer to variable of type long to receive TCP connection handle.

Return values:
HS_TCP_RC_NOT_INIT — Library not initialized
HS_TCP_RC_BAD_PARAM — Invalid parameters
HS_TCP_RC_NO_MEM — not enough memory
HS TCP_RC_OK - success

Sample usage:

rc = HsTcpConnect((long)skp, addr, skp->source_port, dest_port, tcp_event_handler,

&skp->conn_handle);

24.1.25 HsTcpListen

Declaration:

extern
int HsTcpListen(long usr_handle, unsigned short port, unsigned long remote_ip,
hs_tcp_event_fn_t *event_callback, long *listen_handle);

Summary:
This function is used to start listening for a new TCP connection on specified local

port from specified remote IP address. When an incoming connection is received
matching specified parameters, user is notified via event callback. See HsTcp Events
section.

Parameters:
usr_handle — user handle to associate with TCP connection.

port — local port to listen on

remote_ip — remote IP address to accept TCP connection from. Set to O to receive
connection requests from all hosts.

*event_callback — TCP calls this event callback function to report network events
associated with new connection

*listen_handle — pointer to variable to receive listen handle.

Return values:
HS_TCP_RC_NOT_INIT — Library not initialized
HS_TCP_RC_BAD_PARAM — Invalid parameters
HS TCP_RC_NO_CTX — reached maximum number of TCP sessions, cannot
create new session
HS TCP_RC_OK - success

Sample usage:

rc = HsTcpListen((long)skp, port, 0, tcp_event_handler, &skp->listen_handle);

24.1.26 HsTcpBindSession

Declaration:
int HsTcpBindSession(long conn_handle, long user_han);

Summary:
When a new incoming connection request arrives from remote host this function is

used to accept incoming connection and bind a user handle with a new TCP session.

Parameters:
conn_handle — TCP session handle
user_han — user handle to associate with TCP session

Return values:
HS_TCP_RC_NOT_INIT — Library not initialized
HS_TCP_RC_BAD_PARAM — Invalid parameters
HS TCP_RC_OK - success

Sample usage:

HsTcpBindSession(tcp_context, (long)skp);

2.4.1.2.7 HsTcpStopListen

Declaration:
extern int HsTcpStopListen(long listen_handle);

Summary:
This function is called to stop listening for incoming connections.

Parameters:
listen_handle — listen handle obtained with a call to HsTcpListen

Return values:
HS_TCP_RC_NOT_INIT — Library not initialized
HS_TCP_RC_BAD_PARAM — Invalid parameters
HS TCP_RC_OK - success

2.4.1.2.8 HsTcpClose

Declaration:
extern int HsTcpClose(long tcp_handle);

Summary:
This function is used to close a TCP session.

Parameters:
tcp_handle — session handle to close

Return values:
HS_TCP_RC_NOT_INIT — Library not initialized
HS_TCP_RC_BAD_PARAM — Invalid parameters
HS TCP_RC_OK - success

Sample usage:

HsTcpClose(handle);

2.4.1.29 HsTcpSend

Declaration:

extern
int HsTcpSend(long conn_handle, // TCP connection handle
unsigned char *buffer, // packet data
int length, // packet data length
int *txed_len); // bytes actually transmitted
Summary:

This function is used to send data over TCP session.

Parameters:
conn_handle — TCP session handle

buffer — data buffer to send
length — length of buffer to send in bytes
*txed_len — variable to receive count of bytes actually sent

Return values:
HS_TCP_RC_NOT_INIT — Library not initialized
HS_TCP_RC_BAD_PARAM — Invalid parameters
HS_TCP_RC_INV_STATE — cannot queue data for transmission because
connection state is not established
HS_TCP_RC_TXQ_FULL — TCP session input transmit queue is full. User must
call later when TCP is able to accept more data from user for transmission
HS TCP_RC_OK - success

Sample usage:

rc = HsTcpSend(skp->conn_handle, packet_buf, length, txed_len);

2.4.1.2.10 HsTcpReceivePacket

Declaration:
extern void HsTcpReceivePacket(unsigned char *pTcpPkt, unsigned short tcp_len);

Summary:
This function is called to pass a received TCP packet to from IP layer (Hslp).

Parameters:
pTcpPkt — pointer to start of TCP packet

tcp_len — length of TCP packet

Return values:
None

Sample usage:

HsTcpReceivePacket(plpPkt, total_len);

2.4.1.3 HsTcp Events

Event

Description

HS_TCP_USR_EV_CONNECT

Incoming TCP connection request received
matching previously submitted listen with the
HsTcpListen function. The user must accept or
reject TCP connection:

To accept, call:
HsTcpBindSession

To reject, call:
HsTcpClose

Arguments passed with
HS_TCP_USR_EV_CONNECT:

Argl = TCP session handle of new session
Arg2 = remote port
Arg3 = remote IP address

HS_TCP_USR_EV_DATA

Data received from TCP session:

Argl = pointer to buffer containing data
Arg2 = length of data in bytes
Arg3=0

HS_TCP_USR_EV_RELEASE

TCP session closed

Argl = 0;
Arg2 = 0;
Arg3 =0;

HS_TCP_USR_EV_ACCEPT

Outgoing TCP session connected

Argl =0;
Arg2 = 0;
Arg3 =0;

2.4.2 HsUdp

2.4.2.1 Overview

HsUdp module implements UDP (User Datagram Protocol) as per RFC 768.
HsUdp functions include:

= Building and sending UDP datagrams using HsIP module
= Processing UDP datagrams received from HsIP module

2.4.2.2 HsUdp AP

2.4.2.2.1 HsUdplnit

Declaration:
extern void HsUdplnit(unsigned long local_ip, hs_sock_rxfn_t *RxFn, log_fn_t *logfn);

Summary:

This function initializes HsUdp library. This function must be called first before any
other functions of HsUdp are called

Parameters:

unsigned long local_ip — local IP address

hs_sock_rxfn_t *RxFn — pointer to callback function HsUdp is to call when it has received UDP
data.

Prototype:

typedef void hs_sock_rxfn_t

(
unsigned long remote_ip, // remote ip address
unsigned short int local_port, // local port
unsigned short int remote_port, // remote port
int protocol, // protocol
unsigned char *RxBuUf, // received buffer
unsigned short int rxlen // received length

);

log_fn_t *logfn — event log function callback. HsUdp can call this function to log debug events

Return values:
None

Sample usage:

HsUdplnit(hssk.local_ip, hs_sock_receive_data, init->log_fn);

2.4.2.2.2 HsUdpSetParams

Declaration:

extern void HsUdpSetParams(hs_udp_params_t *pParams);

Summary:

This function is used to update HsUdp module with new parameters. Currently used
to update local IP address when it is received from DHCP server (if DHCP protocol

and not static IP is used).

Parameters:

hs_udp_params_t *pParams — parameter structure as follows:

// UDP parameters
typedef struct
{
unsigned long local_ip;
} hs_udp_params_t;

Return values:
None

Sample usage:

HsUdpSetParams(&sUdpPar);

2.4.2.2.3 HsUdpCleanUp

Declaration:
extern void HsUdpCleanUp(void);

Summary:

This function is used to de-initialize HsUdp module.

Parameters:
None

Return values:
None

Sample usage:

HsUdpCleanUp();

// local ip address

2.4.2.2.4 HsUdpSendPacket

Declaration:
int HsUdpSendPacket(

unsigned long dest_ip, /I remote end IP address

unsigned short int dest_port, /I remote UDP port number

unsigned short int source_port, // source UDP port number

unsigned char *payload_buf, // UDP payload to send

unsigned short int payload_len); // UDP payload length
Summary:

This function is called to send UDP data.
Parameters:

dest_ip — destination IP address
dest_port — destination port
source_port — local port
payload_buf — data buffer to send
payload_len — length of data to send

Return values:
1 = data has been transmitted
0 = data transmission failed

Sample usage:

if ({HsUdpSendPacket(dest_ip, dest_port, skp->source_port, pPkt, length))
return HS_SOCK_RC_FAIL;

2.4.2.25 HsUdpReceivePacket

Declaration:
extern void HsUdpReceivePacket(unsigned char *pUdpPkt, int udplen);

Summary:
This function is called to pass received UDP packet to HsUdp module for further

processing.

Parameters:
*pUdpPkt — pointer to start of UDP packet
Udplen — length of UDP packet

Return values:
none

Sample usage:

/* process reassembled datagram */

static void hsip_process_complete_ip_datagram(
unsigned char *plpPkt,// ip packet
unsigned short total_len, /l'ip packet data length (not including header)
unsigned char protocol, /I protocol

unsigned long src_ip /I source ip address

switch (protocol)

{

case HS_IP_UDP_PROTO:
HsUdpReceivePacket(plpPkt, (int)total_len);
break;

case HS_IP_TCP_PROTO:
HsTcpReceivePacket(plpPkt, total_len);
break;

case HS_IP_ICMP_PROTO:
HslcmpReceivePacket(src_ip, plpPkt, (int)total_len);
break;

default:
return;
}

2.5 Network Layer API

2.5.1 Hslp

2.5.1.1 Overview

HsIP module implements IP (Internet Protocol) layer as specified in RFC 791. Hslp primary

functions include:

= Building IP packets and transmitting to the network using Ethernet packet driver API
= Resolving destination IP address to Ethernet MAC address using HsArp module API
= |P packet fragmentation if payload exceeds configured MTU

= Processing received IP datagrams
= |P fragment re-assembly

2.5.1.2 Hslp API

2.5.1.2.1 Hslplnit

Declaration:
extern int Hslplnit(hs_ip_init_t *plnit);

Summary:

This function initialized Hslp library. This function must be called before any other

functions of Hslp are called.

Parameters:

hs_ip_init_t *plnit pointer to parameter structure defined as follows:

Variable

Description

unsigned long local_ip

Local IP address

int local_ip_valid

1= Local IP address is valid. O=Address is
not known

unsigned long gateway ip

Gateway (router) IP address

unsigned long mask

Network mask

unsigned char *local_eth_addr

Pointer to local Ethernet MAC address buffer
(6 bytes long)

int mtu

IP maximum transmission unit in bytes

hsip_timer_start_t *timer_start

Pointer to function callback used by Hslp to
start a timer

Prototype:

typedef long hsip_timer_start_t(unsigned
long timeout_ms, void *arg, hsip_timer_cb_t
*cb);

timeout_ms — timeout in milliseconds

arg — argument that Hslp passed to callback

function

cb — function to call on timer expiry
Returns timer handle

Timer expiry callback prototype:

typedef void hsip_timer_cb_t(void *arg);

arg — argument same as passed to
timer_start function

hsip_timer_stop_t

*timer_stop

Pointer to function callback used by Hslp to
stop a timer

Prototype:
typedef void hsip_timer_stop_t(long
timer_han);

time_han — timer handle

hsip_drv_tx_fn_t

*drv_tx

Pointer to function callback used by Hslp to
Transmit IP packet

Prototype:
typedef void hsip_drv_tx_fn_t(unsigned char
*pkt, int len);

pkt — IP packet buffer
len — length of IP packet buffer in bytes

hsip_log_fn_t

*log_fn

Pointer to function callback used by Hslp to
log a debug event

Prototype:
typedef void hsip_log_fn_t(char *str);

str — event string to print or to put intop
event log

hsicmp_event_fn_t

*icmp_event_fn

ICMP event callback

Prototype:
typedef long hsicmp_event_fn_t(int ev, long
argl, long arg2);

ev — ICMP event code, arguments are event
specific. See description of ICMP module

hsip_get_ticks_fn_t

*get_ticks

Pointer to function callback used by Hslp to
get number of millisecond ticks since bootup

Prototype:

typedef unsigned long
hsicmp_get_ticks_fn_t(void);

returns number of millisecond ticks since
bootup

Return values:
1 = Success
0 = Failed

Sample usage:

ip_init.local_eth_addr = init->local_eth;
ip_init.Ilocal_ip = hssk.local_ip;

ip_init.local_ip_valid = hssk.local_ip_valid;

ip_initmtu = HS_SOCK_IP_MTU;
ip_init.timer_start = init->timer_start_fn;
ip_init.timer_stop = init->timer_stop_fn;
ip_init.drv_tx = init->drv_tx_fn;
ip_init.log_fn = init->log_fn;
ip_init.get_ticks = init->get_ticks_fn;

ip_init.icmp_event_fn = init->icmp_event_fn;

Hslplnit(&ip_init);

25.1.2.2 HslpSetParams

Declaration:

extern void HslpSetParams(hsip_params_t *params);

Summary:

This function updates Hslp library with new IP parameters when they are received

from DHCP server (if DHCP protocol is used).

Parameters:

hsip_params_t *params — pointer to parameters structure defined as

typedef struct
{
unsigned long
int
unsigned long
unsigned long
} hsip_params_t;

Return values:
none

Sample usage:

local_ip;
local_ip_valid;
gateway_ip;
mask;

// local ip address

// is local ip address valid
// gateway ip address

// local network mask

sPar.local_ip = hssk.local_ip;
sPar.local_ip_valid = hssk.local_ip_valid;
sPar.gateway_ip = pUpd->router_ip;
sPar.mask = pUpd->subnet_mask;
HslpSetParams(&sPar);

2.5.1.2.3 HslpShutdown

Declaration:
extern void HslpShutdown(void);

Summary:
This function is used to de-initialize HdIp library.

Parameters:
none

Return values:
none

Sample usage:

HslpShutdown();

2.5.1.2.4 HslpSendPacket

Declaration:

extern int HslpSendPacket(unsigned long dest_ip, /I destination IP address
unsigned char protocol, /I upper layer protocol
unsigned char *pkt, /I IP payload
unsigned short length); /I P payload length;
Summary:

This function is used to send user payload data encapsulated in an IP packet.

Parameters:

dest_ip — destination IP address to send to
protocol — higher layer protocol code

pkt — pointer to IP payload buffer to send
length — length of IP payload buffer in bytes

Return values:
none

Sample usage:

HslpSendPacket(dest_ip, (unsigned char)HS_PROTOCOL_UDP, pUdpPkt, udp_length);

25.1.25 HslpReceivePacket

Declaration:
extern void HslpReceivePacket(unsigned char *pkt, int len);

Summary:

This function is used to pass received IP packet to Hslp for further processing.

Parameters:

pkt — pointer to start of IP packet

Len — length of IP packet in bytes

Return values:

none

Sample usage:

while (1)

{

}
2.5.1.2.6

Declaration:

if (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE))
if (GetMessage(&msg, NULL, 0, 0))

if (ITranslateAccelerator(msg.hwnd, hAccelTable, &msg))

{
TranslateMessage(&msg);
DispatchMessage(&msg);
}
}
else
{
break;
}
}
else
{
Sleep(1);
if (adhandle)
{
r = pcap_next_ex(adhandle, &header, &pkt_data);
if (r>0)
{
HslpReceivePacket(pkt_data, (int)header->caplen);
}
}
}

HslpChecksum16

extern unsigned short HslpChecksum16(unsigned char* data, int len);

Summary:

This function is used to calculate IP checksum on a data buffer.

Parameters:
data — pointer to buffer to calculate checksum on

len — length of buffer in bytes

Return values:
16 bit checksum value

Sample usage:

checksum = HslpChecksum16(pPkt, udplen + HS_UDP_PSHDR_SZ + padding);

2.5.2 Hslcmp

2.5.2.1 Overview

Hslcmp module implements ICMP (Internet Control Message Protocol), specifically 2
functions:

= Responding to incoming ICMP echo requests received from the network
= Sending and ICMP echo requests and processing ICMP echo replies

2.5.2.2 Hslcmp API

2.5.2.2.1 Hslcmplnit
Declaration:
extern int Hslemplnit(hsicmp_init_t *init);

Summary:
This function is used to initialize ICMP library.

Parameters:
hsicmp_init_t *init — initialization structure defined as follows:

Variable Description
hsicmp_timer_start_t *start_timer start timer callback
Prototype:

typedef long hsicmp_timer_start_t (unsigned long
timeout_ms, void *arg, hsicmp_timer_cb_t
*cb);

timeout_ms — timeout in milliseconds

arg — argument that Hslcmp passed to callback
function

cb — function to call on timer expiry

Returns timer handle

Timer expiry callback prototype:

typedef void hsicmp_timer_cb_t (void *arg);

arg — argument same as passed to timer_start
function

hsicmp_timer_stop_t *stop_timer stop timer callback

Prototype:
typedef void hsicmp_timer_stop_t (long
timer_han);

time_han — timer handle

hsicmp_event_fn_t *event_fn event callback

Ptototype:

typedef long hsicmp_event_fn_t(int ev, long argl, long
arg2);

See ICMP events for description

hsicmp_log_fn_t *log_fn event log function callback
Function used buy Hslp to log debug events

Prototype:
typedef void hsicmp_log_fn_t(char *str);

Prototype:
typedef void hsicmp_log_fn_t (char *str);

str — event string to print or to put into event
log

hsicmp_get_ticks_fn_t *get_ticks Callback function to get number of millisecond ticks
since bootup

Prototype:

typedef unsigned long
hsicmp_get_ticks_fn_t(void);

returns number of millisecond ticks since bootup

Return values:

HS ICMP_RC_OK — success
HS_ICMP_RC_BAD_PARAM — Invalid parameter(s)
HS_ICMP_RC_ALR_INIT — Library already initialized

Sample usage:

icmp_init.event_fn = init->icmp_event_fn;
icmp_init.get_ticks = init->get_ticks;
icmp_init.log_fn = init->log_fn;
icmp_init.start_timer = init->timer_start;
icmp_init.stop_timer = init->timer_stop;
Hslcmplnit(&icmp_init);

2.5.2.2.2 HslcmpCleanUp

Declaration:
extern void HslcmpCleanUp(void);

Summary:
This function is used to de- initialize ICMP library.

Parameters:
none

len — length of buffer in bytes

Return values:
none

Sample usage:

HslcmpCleanUp();

2.5.2.2.3 HslcmpPing

Declaration:
extern int HslcmpPing(unsigned long dest_ip, unsigned long timeout_ms, int num_pings,
unsigned short data_size);

Summary:
This function is used to ping remote host using ICMP echo request packets.

Parameters:
dest_ip — destination IP address to ping

timeout_ms — timeout in millisecond for each ICMP ping (time to wait for each ICMP
echo reply)

num_pings - number of times to ping

data_size — number of data bytes to put into ICMP Echo request into data portion of
the packet

Return values:
HS_ICMP_RC_OK - success, ping initiated
HS_ICMP_RC_BAD_PARAM — Invalid parameter(s)
HS_ICMP_RC_NOT_INIT — Library not initialized
HS_ICMP_RC_BUSY — Ping operation is already in progress

Sample usage:

ping_rc = HslcmpPing(addr, timeout_ms, num_pings, ping_size);

2.5.2.24 HslcmpCancelPing

Declaration:
extern void HslcmpCancelPing(void);

Summary:
This function is used to cancel current ICMP ping in progress.

Parameters:
none

Return values:
none

Sample usage:

HslcmpCancelPing();

2.5.2.25 HslcmpReceivePacket

Declaration:
extern void HslcmpReceivePacket(unsigned long from_ip, unsigned char *plcmpPkt, int length);

Summary:
This function is used to pass a received ICMP packet to Hslcmp library for further

processing

Parameters:

from_ip — IP address from which ICMP packet was received from
length — length of ICMP packet in bytes

Return values:
none

Sample usage:

/* process reassembled datagram */
static void hsip_process_complete_ip_datagram(
unsigned char *plpPkt,// ip packet

unsigned short total_len, /l'ip packet data length (not including header)
unsigned char protocol, /I protocol
unsigned long src_ip /I source ip address

switch (protocol)

{

case HS_IP_UDP_PROTO:
HsUdpReceivePacket(plpPkt, (int)total_len);
break;

case HS_IP_TCP_PROTO:
HsTcpReceivePacket(plpPkt, total_len);
break;

case HS_IP_ICMP_PROTO:
HslcmpReceivePacket(src_ip, plpPkt, (int)total_len);
break;

default:
return;
}

2.5.2.3 Hslcmp Events

Event

Description

HS_ICMP_EV_PING_TIMEOUT

ICMP echo request timed out
Argl= icmp sequence number
Arg2 =0

HS_ICMP_EV_PING_SENT

ICMP echo request sent
Argl=icmp sequence number
Arg2 =0

HS_ICMP_EV_PING_REPLY

ICMP echo reply received
Argl= icmp sequence number
Arg2 =0

HS_ICMP_EV_PING_FINISHED

Hslcmp finished ping sequence:

Argl= number of ping requests sent
Arg2 = number of ping replies received

2.5.3 HsArp

2.5.3.1 Overview

HsArp module implements ARP (Address Resolution Protocol) protocol as specified in
RFC 826. HsArp primary functions include:

= Serving HsIP and Hslcmp requests (via API call) to resolve 4 byte IP address to a 6
byte MAC address.

= Building and sending ARP protocol packets

= Reception of processing of ARP protocol packets

= HsArp maintains ARP table and uses fast hash lookup algorithm to find MAC
address by IP address if it is already in ARP table

2.5.3.2 HsArp API

2.5.3.2.1 HsArplnit

Declaration:
extern void HsArplnit(unsigned long local_ip, unsigned char *local_eth, hsarp_drv_tx_fn_t
*drv_tx, hsarp_log_fn_t *log_fn);

Summary:
This function is used to initialize HsArp library

Parameters:
unsigned long local_ip — local IP address, 32 bit unsigned integer

unsigned char *local_eth — pointer to 6 byte buffer representing local hardware address (Ethernet
MAC address)

hsarp_drv_tx_fn_t *drv_tx — pointer to callback function for HsArp to use to transmit ARP packets,
defined as:

typedef void hsarp_drv_tx_fn_t(unsigned char *pkt, int len);

pkt — ARP packet pointer
len — length of ARP packet in bytes

hsarp_log_fn_t *log_fn — pointer to callback function for HsArp to use to log debug events,
defined as:

typedef void hsarp_log_fn_t(char *str);
str —string to print or to put into event log.

Return values:
none

Sample usage:

HsArplInit(init->local_ip, init->local_eth_addr, init->drv_tx, init->log_fn);

2.5.3.2.2 HsArpSetParams

Declaration:
extern void HsArpSetParams(hs_arp_params_t *pPar);

Summary:
This function is used to set updated IP parameters to HsArp library. It is used to

inform HsArp library of new IP address received from DHCP server
Parameters:

hs_arp_params_t *pPar — pointer to parameter structure as follows:
typedef struct

{

unsigned long local_ip; // local ip address
} hs_arp_params_t;

Return values:
none

Sample usage:

HsArpSetParams(&sArpPar);

2.5.3.2.3 HsArpResolveAddress

Declaration:
extern int HsArpResolveAddress(unsigned long dest_ip, unsigned char *eth_addr);

Summary:
This function is used to find Ethernet MAC address corresponding to give IP address.

This function will first lookup local ARP table and if a match is found the function
returns the result MAC address immediately. Otherwise it initiates ARP request and
returns FALSE; user must call this function again at a later time (allowing ARP reply
packet to arrive and be processed by HsArp).

Parameters:
dest_ip — IP address of the host to lookup

*eth_addr — pointer to 6 byte buffer to receive Ethernet MAC address of the host with given IP
address

Return values:
1 — success, MAC address copied into *eth_addr
0 — fail, call back later

Sample usage:

mac_determined = HsArpResolveAddress(dest_ip, destmac);

2.5.3.2.4 HsArpReceivedEthPacket

Declaration:
extern void HsArpReceivedEthPacket(unsigned char *pkt, int len);

Summary:
This function is used to pass a received ARP packet to HsArp library for further

processing

Parameters:

pkt — pointer to start of ARP packet
len — length of ARP packet in bytes

Return values:
none

Sample usage:

[* Ethernet packet received, not thread safe, MUST NOT be called directly from Interrupt */
void HslpReceivePacket(unsigned char *pkt, int len)

{

unsigned short ethernet_type;

if (lip.initialized)
return;

if (('pkt) || (len))
return;

/I discard frames with size less than ethernet header
if len <HS_ETH_HDR_SZ)
return;

get_word(&pkt[12], ðernet_type);

/I check for types of frames we process,
switch (ethernet_type)

{

case HS_ETHTYPE_IP:
hsip_receive_eth_packet(pkt, len);
break;

case HS_ETHTYPE_ARP:
HsArpReceivedEthPacket(pkt, len);
break;

/I discard protocols we don't support
default:

return;
}

	HsTCPIPv4 Programming Manual
	1 Introduction
	2 HsTCPIPv4 API
	2.2.1.2.1 HsTftpInit
	2.2.1.2.2 HsTftpDestroy
	2.2.1.2.3 HsTftpTransfer
	2.2.1.2.4 HsTftpAbort
	2.2.1.2.5 HsTftpTimerExpired
	2.2.1.2.6 HsTftpStartServer
	2.2.1.2.7 HsTftpServerStartReceive
	2.2.1.2.8 HsTftpServerStartSend
	2.2.1.2.9 HsTftpErrStr
	2.2.1.2.10 HsTftpRejectRq
	2.2.1.3.1 Model of Operation
	2.2.1.3.2 Sending File Considerations
	2.2.1.3.3 Receiving File Considerations
	2.2.2.2.1 HsFtpInit
	2.2.2.2.2 HsFtpCleanUp
	2.2.2.2.3 HsFtpTick
	2.2.2.2.4 HsFtpCliConnect
	2.2.2.2.5 HsFtpCliDisconnect
	2.2.2.2.6 HsFtpCliChDir
	2.2.2.2.7 HsFtpCliCreateDir
	2.2.2.2.8 HsFtpCliRemoveDir
	2.2.2.2.9 HsFtpCliList
	2.2.2.2.10 HsFtpCliGetFile
	2.2.2.2.11 HsFtpCliSendFile
	2.2.2.2.12 HsFtpCliDeleteFile
	2.2.2.2.13 HsFtpCliAbort
	2.2.2.2.14 HsFtpCliRename
	2.2.2.2.15 HsFtpCliGetCurrentDirectory
	2.2.2.2.16 HsFtpCliNoop
	2.2.2.2.17 HsFtpSetConfig
	2.2.2.2.18 HsFtpGetStats
	2.2.2.3.1 Event Callback Prototype
	2.2.2.6.1 API Functions
	2.2.2.6.1.1 HsFtpRecursInit
	2.2.2.6.1.2 HsFtpRecurseCleanUp
	2.2.2.6.1.3 HsFtpRecursTick
	2.2.2.6.1.4 HsFtpRecursDownloadFolder
	2.2.2.6.1.5 HsFtpRecursUploadFolder
	2.2.2.6.1.6 HsFtpRecursDeleteFolder

	2.2.2.6.2 Recursive Operations Callback and Events
	2.2.2.6.2.1 Event Callback Prototype
	2.2.2.6.2.2 Events

	2.2.2.6.3 Recursive Operations Module Return Codes
	2.2.3.2.1 HsSmtpInit
	2.2.3.2.2 HsSmtpDestroy
	2.2.3.2.3 HsSmtpTick
	2.2.3.2.4 HsSmtpSendMail
	2.2.3.2.5 HsSmptAbortMail
	2.2.3.3.1 Event Callback Prototype
	2.2.3.3.2 Event Codes
	2.2.4.2.1 HsPop3Init
	2.2.4.2.1.1 Initialisation Structure Definition (hs_pop3_api_t)

	2.2.4.2.2 HsPop3Destroy
	2.2.4.2.3 HsPop3GetMail
	2.2.4.2.4 HsPop3Abort
	2.2.4.2.5 HsPop3GetErrStr
	2.2.4.3.1 Event Callback Prototype
	2.2.4.3.2 Events
	2.2.4.3.3 Message structure (hs_pop3_msg_t)
	2.2.5.2.1 HsNtpInit
	2.2.5.2.1.1 Initialisation Structure Definition (hs_ntp_api_t)

	2.2.5.2.2 HsNtpDestroy
	2.2.5.2.3 HsNtpGetErrStr
	2.2.5.2.4 HsNtpGetTime
	2.2.5.3.1 Event Callback Prototype
	2.2.5.3.2 Events
	2.2.5.3.3 NTP time reply structure (hs_ntp_info_t)
	2.2.6.2.1 HsDnsInit
	2.2.6.2.2 HsDnsCleanUp
	2.2.6.2.3 HsDnsSetParams
	2.2.6.2.4 HsDnsGetIpbyName
	2.2.7.2.1 HsDhcpInit
	2.2.7.2.2 HsDhcpCleanUp
	2.2.7.2.3 HsDhcpRenew
	2.2.7.2.4 HsDhcpRelease
	2.3.1.2.1 HsSockInit
	2.3.1.2.2 HsSockCleanUp
	2.3.1.2.3 HsSockUdpOpen
	2.3.1.2.4 HsSockTcpConnect
	2.3.1.2.5 HsSockTcpListen
	2.3.1.2.6 HsSockClose
	2.3.1.2.7 HsSockUdpSendto
	2.3.1.2.8 HsSockTcpSend
	2.3.1.2.9 HsSockInetAddr
	2.3.1.2.10 HsSockInetNtoa
	2.3.1.2.11 HsSockGetRcString
	2.4.1.2.1 HsTcpInit
	2.4.1.2.2 HsTcpSetParams
	2.4.1.2.3 HsTcpCleanUp
	2.4.1.2.4 HsTcpConnect
	2.4.1.2.5 HsTcpListen
	2.4.1.2.6 HsTcpBindSession
	2.4.1.2.7 HsTcpStopListen
	2.4.1.2.8 HsTcpClose
	2.4.1.2.9 HsTcpSend
	2.4.1.2.10 HsTcpReceivePacket
	2.4.2.2.1 HsUdpInit
	2.4.2.2.2 HsUdpSetParams
	2.4.2.2.3 HsUdpCleanUp
	2.4.2.2.4 HsUdpSendPacket
	2.4.2.2.5 HsUdpReceivePacket
	2.5.1.2.1 HsIpInit
	2.5.1.2.2 HsIpSetParams
	2.5.1.2.3 HsIpShutdown
	2.5.1.2.4 HsIpSendPacket
	2.5.1.2.5 HsIpReceivePacket
	2.5.1.2.6 HsIpChecksum16
	2.5.2.2.1 HsIcmpInit
	2.5.2.2.2 HsIcmpCleanUp
	2.5.2.2.3 HsIcmpPing
	2.5.2.2.4 HsIcmpCancelPing
	2.5.2.2.5 HsIcmpReceivePacket
	2.5.3.2.1 HsArpInit
	2.5.3.2.2 HsArpSetParams
	2.5.3.2.3 HsArpResolveAddress
	2.5.3.2.4 HsArpReceivedEthPacket

