
Developing Central Applications

Trademarks

1 Step RoboPDF, ActiveEdit, ActiveTest, Authorware, Blue Sky Software, Blue Sky, Breeze, Breezo, Captivate, Central,
ColdFusion, Contribute, Database Explorer, Director, Dreamweaver, Fireworks, Flash, FlashCast, FlashHelp, Flash Lite,
FlashPaper, Flex, Flex Builder, Fontographer, FreeHand, Generator, HomeSite, JRun, MacRecorder, Macromedia, MXML,
RoboEngine, RoboHelp, RoboInfo, RoboPDF, Roundtrip, Roundtrip HTML, Shockwave, SoundEdit, Studio MX, UltraDev,
and WebHelp are either registered trademarks or trademarks of Macromedia, Inc. and may be registered in the United States or
in other jurisdictions including internationally. Other product names, logos, designs, titles, words, or phrases mentioned within
this publication may be trademarks, service marks, or trade names of Macromedia, Inc. or other entities and may be registered in
certain jurisdictions including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

Copyright © 1997-2005 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without written approval from
Macromedia, Inc. Notwithstanding the foregoing, the owner or authorized user of a valid copy of the software with which
this manual was provided may print out one copy of this manual from an electronic version of this manual for the sole
purpose of such owner or authorized user learning to use such software, provided that no part of this manual may be
printed out, reproduced, distributed, resold, or transmitted for any other purposes, including, without limitation,
commercial purposes, such as selling copies of this documentation or providing paid-for support services.

Acknowledgments

Project Management: JuLee Burdekin

Writing: Jay Armstrong, Jody Bleyle, Alec Flett, David Jacowitz, Shimul Rahim

Editing Management: Rosana Francescato

Editing: Linda Adler, Mary Ferguson, Noreen Maher, Barbara Milligan, Antonio Padial, Lisa Stanziano

Production Management: Patrice O’Neill

Media Design and Production: Adam Barnett, Christopher Basmajian, Aaron Begley, John Francis

Special thanks to: Mike Chambers, Phillip Kerman, Kevin Lynch, Randy Nielsen, Vijay Shah

Third Edition: January 2005

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

CONTENTS
INTRODUCTION: About This Guide . 7

Intended audience . 8
Navigating the documentation map . 9
Additional resources . 9
Typographical conventions . 9

CHAPTER 1: Getting Started . 11

System requirements . 11
Installing Macromedia Central . 11
Installing the Software Development Kit (SDK) and components 12
The FirstApp application. 13
Adding the final touches . 18
Taking the next steps . 18

CHAPTER 2: Understanding the Macromedia Central Environment 19

About the Macromedia Central framework . 19
Elements of the Central environment . 20
Elements of a Central application . 22
The Macromedia Central product user experience. 24
Central development workflow . 25
Programmatic flow of a typical product . 28
Typical data storage and access techniques. 28

CHAPTER 3: Building a Central Application . 33

Macromedia Central application development workflow. 33
Migrating from version 1.0 . 34
Initializing an application . 36
Implementing the application methods . 37
Implementing mx.central.Application . 38
Using the shell API in an application. 44
Passing data among product parts . 47
Working with preferences . 57
Tracking network status. 64
Caching data locally . 64
Using web services. 68
3

Using regular expressions. 75
Providing custom context menus. 75
Using the Blast feature to share data across applications. 76
Accessing information across domains . 77

CHAPTER 4: Creating Pods . 81

Creating a pod. 81
Controlling pods . 86
Implementing the pod API . 88
Communicating between a pod and the Console. 90

CHAPTER 5: Creating an Agent . 93

Designing an agent . 93
Creating an agent SWF file . 94
Starting an agent . 95
Stopping an agent . 96
Determining the status of an agent . 97
Implementing the agent API . 97

CHAPTER 6: Creating Notices . 101

Creating a notice . 101
Responding to notices . 103
Guidelines for using notices. 104

CHAPTER 7: Using the Blast Feature . 105

Sending data from an application . 106
Receiving data . 108
Sending data from pods. 108
Registering supported data types in the product.xml file 109
Defining your own data type schema. 110
Choosing a schema format . 110
Defining your own data type schema. 113
Selected item storage . 113
Data type reference . 114

CHAPTER 8: Designing for Central Best Practices . 121

Configuring Macromedia Flash . 121
Application user interface . 122
Central coding conventions . 122
Optimizing SWF files . 125
Testing an application . 125
Converting existing Flash applications into Central applications 126

CHAPTER 9: Deploying Central Applications . 127

Deploying an application . 127
4 Contents

CHAPTER 10: API Reference . 133

Central API . 133
Flash API Deltas . 136
Agent object . 137
AgentManager object . 144
Application object . 171
Central object . 184
Console object. 186
DataProviderClass object. 218
FileReference object. 238
FileReferenceList object. 268
LCDataProvider object . 271
LCService object . 295
Log object . 300
MD5 object . 303
MovieClip object. 305
PendingCall object . 306
Pod object . 314
RegExp object . 325
RPC object . 331
RPCFactory object . 334
SelectedItem object . 335
Shell object . 338
SOAPCall object . 381
String object . 383
WebService object . 384
XML object. 392

CHAPTER 11: The product.xml File . 395

Sample product.xml file. 395
Product.XML schema . 396
Detailed product.xml example. 410

INDEX . 413
Contents 5

6 Contents

INTRODUCTION
About This Guide
This guide describes the Macromedia Central framework and explains how to create products for
deployment in Macromedia Central.

Macromedia Central is a centralized environment optimized for running Internet applications.
The Central platform provides an API for seamless communication and data sharing among
applications, as well as a distribution mechanism that takes advantage of the ubiquity of
Macromedia Flash Player. Central also provides an API for caching data and other assets, thus
allowing data-driven applications to be used regardless of whether they are online or offline.

Macromedia Central has a number of benefits for both end users and developers.

Benefits for the end user

 Macromedia Central is a lightweight environment serving up applications that provide a richer
interface to the Internet than is possible with applications hosted within a browser. The Central
environment provides a number of key features, including the following:

Consistent user experience The Macromedia Central SDK provides a core set of UI
components that help enforce consistent functionality and look among applications. This makes
it easier for end users to learn and move between applications.

Online/offline support Central provides an API for developers that makes it easy to cache data
and other assets for offline use. This allows users to use their applications and access their data
regardless of whether they are online or offline.

Cooperative applications Central provides a unified environment where all applications can
work with each other and share information.

Dynamic notification Users can set up notices on a per-application basis, and thus are notified
when specific events occur. For example, a stock application may allow a user to set up a notice
when a stock reaches a certain price.
7

Benefits for the developer

Based on Macromedia Flash Player and the ActionScript scripting language, Macromedia
Central provides an environment and API for taking advantage of skills that use Flash to create
and distribute applications.

Ease of installation Macromedia Flash Player 6 (and later versions) has built-in support for
installing Central applications as well as the Central environment. This allows developers to take
advantage of the ubiquity of Flash Player to reach virtually everyone on the Internet.

Central environment Central provides an easy-to-use, consistent UI for deploying and
running applications.

Central components The Central SDK provides a core set of UI components that allow
developers to quickly create applications and provide consistent user interfaces for users.

Central application programming interface (API) In addition to providing full support for
Macromedia Flash 6 ActionScript and APIs, Central provides a set of APIs that simplify
application development and management.

Web services support Central has a full-featured web services API that allows developers to
quickly create applications that interface with data and web services on the Internet.

Regular expression support Central has a complete regular expression API to simplify the
manipulation of text and strings.

Data caching API Central provides a number of APIs for storing data and assets locally for
both online and offline use.

Dynamic image loading Central provides support for dynamically loading JPEG (including
Progressive JPEG) and GIF files.

Auto update support Central provides support for easily and automatically pushing out
application updates to users.

Intended audience

This book is intended for Flash developers with a good working knowledge of Flash and
ActionScript, as well as for developers of other interactive and enterprise applications. This book
assumes that the reader has access to the Flash MX documentation and Macromedia Developer
Center resources at www.macromedia.com/devnet.

Note: The format of Chapter 10, “API Reference,” on page 133 is based on ActionScript 2.0, which is
a feature of Macromedia Flash MX 2004. The primary difference between the two versions of
ActionScript is that ActionScript 2.0 uses classes as the main unit of functionality, while ActionScript
1.0 uses objects as the main unit of functionality. Users of Flash MX and ActionScript 1.0 should
simply substitute the word object for the word class in the reference chapter.
8 Introduction: About This Guide

http://www.macromedia.com/devnet

Navigating the documentation map

This book explains the details of developing applications for Macromedia Central. It assumes that
the reader has a general knowledge of Macromedia Flash. Documentation about Flash and related
products is available separately.

• For a complete description of the Macromedia Central user interface, see Using Macromedia
Central, included in the SDK.

• For information about Macromedia Flash, see Using Flash and Flash ActionScript Language
Reference, both available from the Help menu within the Flash authoring environment.

• For information about using components in Central applications, see Building Central
Applications with Components, included in the SDK.

Additional resources

The Central Developer Center at www.macromedia.com/go/central_dev_center is updated
regularly with the latest information on Central. It also contain articles, tutorials, samples, and
other resources to help developers get the most out of the Central environment.

The Macromedia Central Forums provide developer-to-developer interaction to discuss
application development for Macromedia Central. The forums can be found at http://
webforums.macromedia.com/central/.

The Macromedia Flash Support Center website at www.macromedia.com/go/flash_support is
updated regularly with the latest information on Flash. It also contains advice from expert users,
advanced topics, examples, tips, and other updates. Check the website often for the latest news on
Flash and for tips on getting the most out of the program.

Typographical conventions

The following typographical conventions are used in this book:

• Code font indicates ActionScript statements, XML tag and attribute names, and literal text
used in examples.

• Italic font indicates placeholder elements in paths. For example, /settings/myPrinter/ means
that you should specify your own location for myPrinter.

• Code italic indicates a placeholder element, such as an ActionScript parameter or object
name, that you replace with your own text when writing a script.

• Bold font indicates a verbatim entry.
Typographical conventions 9

http://www.macromedia.com/go/flash_support
http://webforums.macromedia.com/central/
http://webforums.macromedia.com/central/
http://www.macromedia.com/go/central_dev_center

10 Introduction: About This Guide

CHAPTER 1
Getting Started
This chapter explains how to set up and install Macromedia Central to develop applications. This
document includes a step-by-step tutorial for creating a basic application you can use to ensure
that Central is installed correctly and to walk you through the basic application development
process. You can also use this application as a basis for creating more complex applications.

To learn more about the Central interface, read Chapter 2, “Understanding the Macromedia
Central Environment,” on page 19. You can return to this chapter when you are ready to start
building your first Central application.

System requirements

To develop applications for Macromedia Central you must have a tool (such as Macromedia Flash
MX 2004) that can generate SWF files.

To deploy Central applications, you must have access to a web server.

To run Macromedia Central, you must run Central on a computer that meets the Central system
requirements. You can find these requirements at www.macromedia.com/go/central_sysreq.

Installing Macromedia Central

Macromedia Flash Player 6 (6.0.65.0) and later has built-in support for installing Macromedia
Central. If a user attempts to install a Central application on a computer where the Central
environment is not already installed, Flash Player prompts the user to install Central first. Then,
after Central is installed, Central also installs the application originally requested.

If a user attempts to install a Central application on a computer where the Central environment is
already installed, Flash Player installs the application into Central.
11

http://www.macromedia.com/go/central_sysreq

To download Central from the Macromedia website:

1. Make sure you have the latest version of Macromedia Flash Player installed on your system.
(You’ll need Flash Player 6 (6.0.65.0) or later.)

■ You can find out which Flash Player version is installed at the Macromedia Flash Player
Download Center at www.macromedia.com/support/flash/ts/documents/test_version.htm.

■ You can install the latest version of Macromedia Flash Player from the Macromedia Flash
Player Installation page at www.macromedia.com/go/getflashplayer.

2. To install Central, go to the Central Installation page at www.macromedia.com/go/
install_central and follow the instructions.

Installing the Software Development Kit (SDK) and components

The Central Software Development Kit (SDK) ZIP file contains documentation, sample files,
utility files, components and other resources. These can be used to design and develop
applications for Central.

To install the Central SDK:

• Extract the contents of the ZIP file to a directory of your choice. You will see the following
directory structure under the root directory you chose:

To install the authoring extensions:

1. Make sure you have the Macromedia Extension Manager installed. You can download the
Extension Manager from www.macromedia.com/exchange/em_download.

2. Locate the AuthoringExtensions.mxp file in the AuthoringExtensions subdirectory under the
SDK directory.

3. Open the AuthoringIntegration.mxp file in the Macromedia Extension Manager to install the
components automatically in the Macromedia Flash authoring tool.

File/Directory name Description

AuthoringExtensions Directory containing the Central components, Central Debug Panel,
Central Publishing Tool and the intrinsic class files.

Documentation Directory containing all of the SDK help files, including the help files for
the components, and the example files referred to in the documentation.

Samples Directory containing sample files that the Central team has put together
for you to explore.

Utilities Directory containing utilities that make Central development and
debugging easier.

ReleaseNotes.html File containing the latest information regarding the product, including
known issues.

StartHere.html File listing all of the SDK parts.
12 Chapter 1: Getting Started

http://www.macromedia.com/support/flash/ts/documents/test_version.htm
http://www.macromedia.com/go/getflashplayer
http://www.macromedia.com/exchange/em_download
http://www.macromedia.com/go/install_central
http://www.macromedia.com/go/install_central

To view the Central components:

1. Start the Macromedia Flash authoring tool.

2. Select Window > Components.

The Components panel appears.
3. Open Central Components from the Components panel.

To view the Central Product Setup Wizard tool:

1. Start the Macromedia Flash authoring tool.

2. Select Commands > Central Product Setup.

The publishing tool appears.

To use the Central Debug panel:

1. Start the Macromedia Flash authoring tool.

2. Select Window > Other Panels > Central Debug Panel.

The Central Debug Panel panel appears.
3. Start Macromedia Central.

To install the sample files provided with the SDK:

1. For each sample, copy the entire subdirectory named sampleapplicationInstaller (for example,
StockWatcherInstaller) to a web server directory (local or remote web server).

2. Use your web browser to navigate to that directory, and open the page installer.html.

3. Click the installation badge to install application.

The FirstApp application

You can find a sample application named FirstApp in the Documentation/pdf/
Dev_Guide_Examples directory of the SDK. This is a very simple application that dynamically
displays text after the application is loaded into Central. It should provide you with a basic idea of
the process for creating, testing and installing applications for Central.

FirstApp files

The complete source files for FirstApp can be found in the FirstApp directory, which is a
subdirectory in the Documentation/pdf/DevGuide_Examples directory. It contains the
following files:

Filename Description

FirstApp.fla Macromedia Flash authoring file that contains the FirstApp design and
ActionScript.
The FirstApp application 13

Re-creating the FirstApp application

Note: The FirstApp created here is a simpler version of the FirstApp sample provided with the Beta
SDK. That sample contains more calls and uses a pod.

Re-creating the FirstApp application can help you understand the basics of Macromedia Central
application development. The following procedures explain how to create the most basic
application that can be successfully downloaded and installed into Central.

Development consists of the following five steps:

1. Creating a Macromedia Central application within the Flash authoring environment.

2. Obtaining a product ID for the application from www.macromedia.com/go/central_productid.

3. Preparing the product.xml file.

4. Installing the application into Central.

5. Testing and debugging the application within Central.

Creating a Macromedia Central application

Follow the steps below to re-create the FirstApp application.

To create the FirstApp application:

1. In the Macromedia Flash authoring tool, create a new file and name it FirstApp.fla. In the
Publish Settings tab, make sure that the file is set to publish to Flash Player 6 (File > Publish
Settings > Flash).

2. Create three new layers on the Timeline named Actions, Title, and TextField. The layer names
are not important, but they help organize the source file.

3. On the Title layer, create a static text field and add the following text: My First Application.

4. Switch to the TextField layer and create a dynamic text field with an instance name of fFirstText.
This will be used to dynamically display a message when the application is successfully loaded
into Central.

5. Select the first frame of the Actions layer. In the Actions panel, type the following code (you can
omit the comments):
// called by Central when application is loaded
onActivate = function(shell, appId, shellId, baseTabIndex, appData)
{

// Display text in text field.
fFirstText.text = "Application has loaded!"

product.xml Product descriptor XML file that tells Central about the application. It is used
at installation time to describe the application to the user and to download all
the required pieces. The tag library for this file can be found in Chapter 11,
“The product.xml File,” on page 395.

icons/40x40.swf The SWF file for the FirstApp icon. (To use the icon for your application,
replace the SWF file with your own file.)

Filename Description
14 Chapter 1: Getting Started

http://www.macromedia.com/go/central_productid

// Set the message within the Central status bar.
shell.setStatus("Application has loaded");

}

// called by Central when application is unloaded. Clean up any global
// resources, and close any local connection and socket connections here.
onDeactivate = function(shell, appId, shellId, baseTabIndex, appData)
{
}

// lets the Central shell know the app is loaded.
// The shell will then call the onActivate() method.
mx.central.Central.initApplication(this, this);

6. Save the FLA file.

7. Publish the FLA file (File > Publish). This creates a SWF file that contains your application.

Before you move on, take a minute to examine the ActionScript code in the application. The
following functions are the bare minimum that all Central applications should contain.

• onActivate Callback function called by Central when the application has loaded. It is
passed parameters with information about and references to the Central environment.

• onDeactivate Callback function called by Central when the application is about to be
closed. You should include code here to clean up any resources that may have been used by
your application, such as global variables, socket connections, or shared objects.

• mx.central.Central.initApplication Function call that tells the Central environment
that your application is ready to start running; onActivate is called after this method is called.

Note: You can find a more detailed description of these and other functions in Chapter 10, “API
Reference,” on page 133.

The Central.initApplication method is called as soon as your application is loaded into
Central. It is passed two parameters, both of which are references to your application. Central
uses these parameters to communicate back to your application.

After Central.initApplication is called, Central calls the onActivate callback function for
the application. This is where your application should begin to initialize itself. The onActivate
function in the FirstApp application does only two things. First, it sets the text in the dynamic
text field to specify that the application has loaded and initialized. Second, it uses a reference
to the Central shell passed into the onActivate method, to place a message on the Central
status bar.

The onDeactivate function is called when the application is about to be closed, and should be
used to clean up any resources, such as global variables, used by the application. In the example,
no resources were used and therefore no code is needed here. However, consider including the
function, even if you do not need it initially, because it can help remind you to add cleanup code
when necessary.
The FirstApp application 15

Obtaining a product ID

All applications installed into Macromedia Central must have a product ID (the product ID is
included within the product.xml file, see “Preparing the product.xml file” on page 16). This
includes applications that you install into Central for development and testing purposes. The
StartHere.html page of the SDK provides a product ID number you can use for testing.

To obtain a product ID, go to www.macromedia.com/go/central_productid and follow
the instructions.

Preparing the product.xml file

The product.xml file provides Central with the information necessary to install, run, and manage
your application. Central loads and reads this file when your application is installed by a user. In
order for Central to be able to use the product.xml file, it must be in the same domain as all other
files that will be installed as part of your application.

Follow these steps to prepare a customized version of the product.xml file for your application.

To customize a product.xml file:

1. Create a copy of the product.xml file from the FirstApp sample application.

2. Open your copy of the product.xml file and change the name attribute for the product and
application tags to the name of your application—in this case FirstApp.

3. Change the application src path to point to the location of your SWF file. This path can be
relative to the location of the product.xml file. All application files must be located in the
Internet domain as the product.xml file.

4. Reference an icon. You can create your own icon and specify its location in the two icon src
tags of the product.xml file. The icon files should be a 35 x 35 pixel SWF file for the standard
toolbar, and a 23 x 23 pixel SWF file for the small toolbar. Central will scale larger icons to fit
the toolbar states. If you prefer, simply reference the icon file that comes with the sample
application. If no icon is specified, a default icon is used.

Using the installation badge to install your application

To install your application into Central, you must have a Flash-based installer that contains the
code to prompt Flash Player to install your application. The SDK includes a standard installation
badge that you can use to install your application.

The installation badge loads the data from the product.xml file and uses that to install
the application.

To use the installation badge:

1. Copy the installation.swf and installation.html files from the Utilities/InstallationBadge
directory on the SDK.

2. Place the files into the same directory as your product.xml file.

3. Copy the directory to a web server (local or remote).

4. Load the installation.html page in a web browser.

5. Click the installation badge to begin the installation of your application.
16 Chapter 1: Getting Started

http://www.macromedia.com/go/central_productid

The badge detects whether the user has the minimum version of Flash Player necessary to install
Central and Central applications. If they do not, it will direct the user to install a newer Flash
Player version.

The installation badge loads the application name, description and icon specified within the
product.xml file.

Testing and debugging your application within Central

Because applications running within Central must have access to the Central API, they must be
tested and debugged within the Central environment. This means that the development process
differs slightly from traditional Flash development.

There are two main steps to testing and debugging within the Central environment. The first is
publishing a new SWF file directly into Central. This is possible once you have installed your
application into Central. The second is viewing runtime debug and trace information from the
application.

To publish directly into the Central environment:

1. Find the location where your application files were installed by Central. In Windows, this will
be similar to: C:\Documents and Settings\USERNAME\Application Data\Macromedia\
Central\#Central\<random directory>\DOMAINNAME\<subdirectory>. On the Macintosh,
this will be similar to: Hard Drive/Users/USERNAME/Library/Application Support/
Macromedia/Central/#Central/<random directory>/DOMAINNAME/APPNAME/.

2. Open your application within the Flash authoring environment.

3. Open the Publish Settings dialog box (File > Publish Settings).

4. Set the file to publish into the directory located above. Make sure that the file is published with
the same filename that was installed by Central.

5. Click OK to save the settings.

To test your application, you must first publish it (File > Publish). This compiles the SWF file
into its application directory within Central. You can then view the updated application file by
switching to Central and reloading the application by switching to another application within
Central and then switching back. If you are testing a pod, you must close the pod and reopen it. If
you are testing an agent, you must restart Central.

After the application is running within the Central environment, you can use the Central Debug
panel to view runtime debug information from the application. The Central Debug panel runs
within the Flash authoring environment and can be installed from the SDK.
The FirstApp application 17

To test your application using the Debug panel:

1. Open the Debug panel in the Flash authoring environment. In Flash MX, select
Windows > Central Debug Panel. In Flash MX 2004, select Windows > Other Panels >
Central Debug Panel.

2. Make sure that the Omit Trace Actions option is deselected in the public settings (File > Publish
Settings > Flash).

3. Add trace statements to your application. You can pass in various data types including strings,
objects and arrays.

4. Test your application within Central. Any trace statements encountered during the
application’s runtime will be printed out into the Debug panel within the Flash
authoring environment.

Adding the final touches

Congratulations on creating your first Central application.

The FirstApp application has only the most basic functionality. You can add a number of features
and elements to your application, including the following:

• Pods
• An agent
• Notifications
• User preferences
• Support for the Blast feature

All of these features and other examples are described in detail throughout the rest of this
document.

Taking the next steps

Now that you have successfully built and tested your first Macromedia Central application, you
are ready to find out more about Central, the SDK, and the registration and publication process.

The next chapter provides an architectural overview of Central, gives a typical use scenario, and
outlines your development tasks in relation to this architecture. Subsequent chapters provide
details about developing full-featured applications, including debugging techniques, and tips and
tricks. The last chapters of this book provide reference information for the Central application
programming interface (API) (Chapter 10, “API Reference,” on page 133), and your product’s
XML descriptor file tag library (Chapter 11, “The product.xml File,” on page 395).

The Macromedia DevNet (www.macromedia.com/go/central_dev_center) also has many valuable
articles on developing Central applications.
18 Chapter 1: Getting Started

http://www.macromedia.com/go/central_dev_center

CHAPTER 2
Understanding the Macromedia

Central Environment
In Chapter 1, “Getting Started,” on page 11, you installed the Software Development Kit (SDK)
and tested your Macromedia Central development environment with the FirstApp application.
This chapter describes the Central architecture and the flow of a typical user scenario. The
chapter also explains the tasks involved in creating a Central application.

About the Macromedia Central framework

In Central, a product is a collection of SWF files that define the user interface and data
management for your application. The FirstApp application, which is described in Chapter 1,
“Getting Started,” on page 11, is a simple Macromedia Flash application that runs as a product on
the Central platform.

The basic architecture for the Central platform has three layers, as the following figure shows:

Macromedia Central architecture

The Central architecture includes the following layers:

• The Central Player displays the Central application window (often called the shell) and the
Console. The Central Player sits on top of the operating system and makes network calls
through the local network connection directly to remote services. It also installs and uninstalls
products, and accesses the live data for the Application Finder (a built-in Central application
that lists all Central applications available through Macromedia). The Central Player manages
configuration information, local caching, simple data typing, and the routing of function calls.

ApplicationsYour
product

Central
interface

Pods & Notices Agent

ShellShell ConsoleConsole Agent Manager Agent Manager

Macromedia Central Player
19

• Applications, which appear in the shell, and pods (see “Pods” on page 23), which appear in the
Console, provide users with a way to interact with products.

• Agents are SWF files that do not have user interfaces. The agents run in the background and
communicate with your applications and pods through the Local Service API. The Agent
Manager controls activation and deactivation of an individual agent.

Products that you create are managed by the shell, Console, and Agent Manager. Your products
may consist of an application SWF file, one or more pod SWF files, and an agent SWF file. You
declare these SWF files in a product.xml file that Central uses when a user starts and deploys your
product.

Your application interacts with the Central Player, shell, Console, and Agent Manager. This
chapter focuses on the specific parts of your product and the way they interact with these Central
services.

Elements of the Central environment

The Macromedia Central environment consists of three main elements. These elements provide
the graphical and programmatic interfaces of Central.

• The Central shell acts as a container for application SWF files and provides some user controls
that are common to most Central applications. For more information, see “The Central shell”
on page 21.

• The Console acts as a container for notices and pods. For more information, see “The
Console” on page 22.

• The Agent Manager runs agent SWF files. Agents and the Agent Manager do not have a
graphical interface for the user.

Central shell

Application SWF files

Notices

Central Console

Pod

Show/Hide Application
Drawer
20 Chapter 2: Understanding the Macromedia Central Environment

For more information, see “The Agent Manager” on page 22.

The following sections describe the elements of the Central environment in more detail.

The Central shell

The Central shell is the primary instance of the Central Player running on the user’s system (the
Central Player can also appear as the Console, simultaneously with the Central shell, and
independently of the Central shell; see “The Console” on page 22). The top portion of the shell
window contains a toolbar that shows the Central icon, icons for installed applications, and
indicators for notices and network connection status. You can click the Central icon to display a
list of applications that are currently installed in Central. The bottom portion of the window
contains a status bar that displays a progress bar and status text, which can both be controlled by
the currently running application, and the Blast UI elements. The Blast feature lets users send
selected data from one Central application to another.

A user can change from one application to another within a single application window, or open
multiple application windows displaying different applications. Users can open new application
windows by selecting File > New Window. Each new application window is created on top of a
new instance of the shell.

Application Drawer

The Central shell contains a drop-down Application Drawer that holds icons for all installed
applications. The Application Drawer lets users move icons off the main toolbar so the interface
does not become too cluttered, and the drawer also holds more icons than can fit on the standard
toolbar:

Show/Hide Application
Drawer

Drag/Resize Handle

Favorites symbol
Elements of the Central environment 21

When the user installs a new application, the application’s icon appears on the toolbar. The user
clicks the Show/Hide menu option to open and close the Application Drawer. With the
Application Drawer open, the user can drag the icon into the drawer to take it off the toolbar.
Similarly, the user can drag an icon back on to the toolbar and close the Application Drawer.

The Console

The Console displays pods and notices. Pods are small SWF files that can provide an interface for
accessing the basic functionality of your application. You can use pods to provide redundant
access to application features or to extend the functionality of your primary application. Pods can
be displayed, collapsed, or hidden completely. Pods can only be displayed in the Console. One
advantage of pods is that they are displayed as long as the Console is open, and multiple pods
from different products can be displayed simultaneously. For more information, see “Pods”
on page 23.

Notices are brief text messages that any application, agent, or pod can generate to inform the user
of events or new information. Notices are displayed in the Notice pane near the upper edge of the
Console. For more information, see “Notices” on page 24.

The Agent Manager

The Agent Manager controls and runs agents. Agents are SWF files containing programming logic
that the developer chooses to separate from the primary application or its pods. Implementing
functionality in the agent can be useful when both an application and its pods need access to that
functionality. Another advantage of running code in the agent is that the agent runs as long as
Central is running, regardless of whether the associated application or pod is running. For this
reason the agent is useful for monitoring remote data or performing other functions that should
not be interrupted.

Each Central application can have only one agent. The Agent Manager and the agents it runs
have no visible interface.

Elements of a Central application

Your Macromedia Central application can consist of one or more Macromedia Flash SWF files,
which communicate with the Central environment through its application programming
interface (API). A Central product can contain more than one application, and an application can
contain more than one SWF file, depending on how it is designed. The separate parts of an
application can communicate with each other using LCService, LCDataProvider, or
localConnection objects. For more information on local connections, see “Passing data among
product parts” on page 47.

A Central application can contain the following elements:

• Application SWF files are Flash SWF files that provide the primary interface for the
application and appear in the application window. For more information, see “Application
SWF files” on page 23.
22 Chapter 2: Understanding the Macromedia Central Environment

• Pods are small SWF files that provide alternate versions of the application UI to display in the
Console. A pod may contain a subset of functionality for the application, or alternate
functionality than the presentation in the application window. For more information, see
“Pods” on page 23.

• Agents are SWF files that run in the background and have no user interface. Agents are a good
place to put program logic that is used by both an application SWF file and a pod SWF file.
For more information, see “Agents” on page 23.

• Notices are messages generated by any Application, Pod, or Agent. Notices appear in the
Console. For more information, see “Notices” on page 24.

• Application icons appear in the user interface in the toolbar and the Application Drawer. For
more information about icons, see “Product files” on page 26.

Application SWF files

Each application that you develop for Macromedia Central consists of one or more SWF files.
Central application SWF files run as application windows within the shell. To operate correctly in
the context of the shell, your application SWF files must support the Central application API, by
containing functions in the ActionScript of your SWF files. Central calls these functions to notify
your application of certain events and to request information. Because Central applications
actually run inside the application window SWF file, they must also observe certain coding
conventions to function properly in Central (such as not using the _global variable when
creating objects). All of the APIs and coding conventions are discussed in detail in the following
chapters.

Pods

Pods are small SWF files that can provide redundant access to an application’s functionality or
extend that functionality. Because pods are displayed in the Console, they can persist even when
the user switches to another Central application. Pods can be useful for displaying frequently
updated data that users might want to be continuously available on the desktop, such as stock
quotes or news headlines.

For example, the pod for a weather application might show the current weather for San Francisco
and let the user enter a ZIP code to see the weather for another location. Pods can also be
designed as scaled-down versions of the host application. For instance, a pod for a directory
application might contain a search field and display a phone number.

A Central application may have no pods, one pod, or multiple pods. Users can choose to show or
hide individual pods, or the entire Console.

Agents

An agent is a SWF file that runs on top of the Agent Manager. The Agent Manager and its agents
have no visible interface. You should use agents to implement programming logic that is common
to both an application and its pod, or that needs to run continuously when Central is running.
Typical uses for agents include monitoring remote information on a server and coordinating data
transfer between an application and its pods.
Elements of a Central application 23

An agent can generate notices and can communicate events to the shell and the Console. Users
can set the preferences in Central to enable or disable agents. An agent must implement the
Central Agent API, as described in Chapter 5, “Creating an Agent,” on page 93 and in
Chapter 10, “API Reference,” on page 133.

Notices

A notice is a dynamically generated text message that provides information for the user. An
application, a pod, or an agent can generate notices. You can set a notice to require a response
from the user, or the notice can dismiss itself (requiring no user interaction) once certain criteria
are met. You can show a summary of recent notices in the Console. For more information, see
Chapter 6, “Creating Notices,” on page 101.

The Macromedia Central product user experience

Although a product can consist of several applications, the example described in this section is
based on a product that has only one application. The example reflects how users interact with a
typical application and pod.

In a typical user scenario, the following events occur:

The user accesses your product After you register and publish your application with
Macromedia, it is available to the user on your Internet or intranet website. The user can install
your application through the Macromedia Central Application Finder or directly from your
server. Because you must register the application with Macromedia, the files that the user installs
must match the description and location you originally provided to Macromedia. In this way,
users are assured that the files they are about to install are the ones you intended.

The user installs your product To make your application available to users, you must provide a
Flash button with some ActionScript for installing your application from your website. When the
user clicks the installation button you provide, your application installs and runs in Central. If
Central is not yet installed when the user clicks your Flash button for your application, the user’s
existing Flash Player installs Central before installing the chosen application.

In the FirstApp example described in Chapter 1, “Getting Started,” on page 11, the installation
button is in the installer SWF file. You usually place the installer file on an HTML page and
publish it on your web server.

The application or user opens pods If your application uses pods, Central can open pods
automatically when the user starts the application, or the application can open pods in response
to user input.

The agent updates data The agent receives updates of remote and local data, and sends these
updates to the other parts of your application.

Notices are generated When new data is received, the agent, application, or pod can generate a
notice to alert the user.
24 Chapter 2: Understanding the Macromedia Central Environment

Central development workflow

When you develop a Macromedia Central product, you typically follow these steps:

1. Create an application SWF file, and possibly additional SWF files for pods and an agent.

2. Describe the files in a product.xml file. (For more information, see Chapter 11, “The
product.xml File,” on page 395.)

3. Register the product on the Macromedia website.

4. Test your product in the Central environment, debugging, redeploying, and re-installing your
files until you’re satisfied with the finished product.

5. Publish your product in a location available to Central clients.

The Central development workflow

Register your Product

Test your Product

Debug your Product

Publish
All

Files

Create using Authoring
Tool and ActionScript Files

App.,
Pod,
& Agent
SWF Files

Create using editing toolProduct
XML File
Central development workflow 25

Product files

A typical Central product has many parts, and these parts reside in a number of different files. To
deploy your application, you will need to make these files available on a web server. Some of these
files will be used to tell Central how to install your product, while the rest of the files will actually
be installed on the user’s computer. This section explains the use of each of these files.

Installer files Before you can install an application in Central, some specific code must be
executed. You can find this code in the CentralInstall.as file included with the Central SDK. A
typical way to implement this code is to include it in a simple Flash file containing a button that
users can click. By setting the button to call the code in the CentralInstall.as file, you can create a
simple installation button. The installer code works with the user’s existing Flash Player to install
and start Central if necessary, and then install and start your application in Central.

The only file read during download is product.xml, which must correctly describe all the files that
will be installed. If the product.xml file does not exist, is corrupted, or is missing necessary
information, the download fails. For more information about the requirements of the
product.xml file, see Chapter 11, “The product.xml File,” on page 395.

Flash files Your completed application, consisting of SWF, JPG, HTML, and other
application-specific files, resides on the server that is accessible to the user. The application’s
product.xml file must be placed in the same domain as these files.

After the files are posted, you register and publish the application at the Macromedia Central
Application Finder website so users can find it. The Application Finder website is integrated into
the Central interface. When users click the App Finder application icon, they will see a list of
applications available through the Application Finder website. When publishing your application,
you can place an installation button on your site, list the application in the Application Finder, or
both.

The product.xml file Central uses the product.xml file to locate and install the application, as
well as the pod and agent SWF files for your application. The product.xml file also includes the
name of the author of the application, its price, the length of the trial period for try-and-buy
products, and other information needed to install the application and complete a purchase or try-
and-buy transaction.

The product.xml file must use a specific XML tag structure and must reside in the same server
directory as the SWF files for your application.

The XML schema of the product.xml file is described in Chapter 11, “The product.xml File,” on
page 395. To see a typical XML file, see “Sample product.xml file” on page 395.

Application icons In addition to its primary SWF files, each Macromedia Central application
should include one or more icons. These icons should also be SWF files. These SWF files cannot
animate or execute ActionScript. You can include just one icon and let Central resize it
automatically for display in different locations, or you can include multiple sizes of your icon and
Central automatically chooses the most appropriate size for each display location. If you include
multiple sizes, you must declare each icon size in the product.xml file.

Note: Center your icons in the graphics file or they will appear distorted in the Central interface.
26 Chapter 2: Understanding the Macromedia Central Environment

If you include only one icon, it should be 35 x 35 pixels. An icon with these dimensions looks
clear when resized for each of the locations where Central displays it.

Pod files

Flash files If your product includes one or more pods, you must include these files in the
directory where you posted your application file. You also must describe the pod files in the
product.xml file.

The product.xml file with pod tag If an application includes a pod, the product.xml file should
contain the pod tag, as in the following example:
<pod

name="Stock Watcher"
src="pod/pod.swf"
enabled="1">

Agent files

Typically, applications use an agent to manage data and communicate it to applications and pods
that are members of its application group. Application parts can communicate with one another
through LCService, LCDataProvider, or localConnection objects used in the Agent files. An
application can have only one agent, but you can make that single agent perform any number of
tasks.

Flash files You create an agent as a Flash (SWF) file. Because Central plays the agent Flash file
in the background, executing its code but never displaying it, the agent Flash file does not need
any visual component.

The product.xml file You associate the agent with your application in the product.xml file by
adding the agent as a subelement of the application tag, and declaring the name and the link to
the agent SWF file. In the following example, the src link can be relative to the product.xml file
on your server. The agent.swf file is placed on the server in the same directory as product.xml:
<agent name="MyAppAgent" src="agent.swf" started="true"/>

Location Size of icon
(pixels)

Description

Standard toolbar and
Application Drawer

35 x 35 To prevent distortion, Central sizes the larger dimension of
your icon to 35 pixels, and scales the other dimension.

Small toolbar 23 x 23 The icons are not affected by the length of the
application name. The application button size is affected,
but the icon is not.

My Applications 25 x 25 These icons appear in the My Applications data grid.

My Applications details 50 x 50 These icons appear in the section that shows the
application details.
Central development workflow 27

Programmatic flow of a typical product

Your product consists of application, pod, and agent Macromedia Flash files, a product.xml file,
and an icon file. When the user installs your product, Macromedia Central starts your Flash files,
calls the onActivate event handler of the application SWF file, and initializes your application
according to the code that you provide in the onActivate event handler. Central also calls event
handlers for any pods and the agent. Your application, pods, and agent should provide event
handlers for activating the application, getting online or offline status, and other events. Also, it is
a good practice to implement the agent as the sole place where remote data is accessed and
managed. This prevents situations in which the pod and application are displaying out-of-sync
data, for example, and allows you to avoid replicating data-management code in multiple parts of
your application.

Typical data storage and access techniques

Macromedia Central supports existing Macromedia Flash functionality, such as the XML and
loadVariables() APIs, as well as Flash Remoting services and a set of web services APIs.
Another Flash interface is the local shared object API, which provides a mechanism for
transferring data between Flash files. Central also offers a local Internet cache API as a way to
store most file types locally. In addition, Central provides support for native web services using
SOAP and WSDL 1.1 standards, so that no application gateway or Flash Remoting is required.

Your Application

Calls
Central.initApplication(this, this)

localData = new LocalConnection();
.
localData.send("myAgent","getData", arg);

Central

Your Agent

Calls
onSomeEvent(a,...,n)

Calls
onActivate(a,b,c,d,e)

initApplication(a,b)

Calls
onActivate(a,b,c,d,e)

initApplication(a,b)

onActivate(a,b,c,d,e)

onSomeEvent(a,...,n)

notice = new Object();
.
functionNoticeEvent(event,noticeData,appData, appID);
28 Chapter 2: Understanding the Macromedia Central Environment

Storing data locally

If you want to store persistent data for an application, pod, or agent, Macromedia recommends
using local shared objects.

Local shared objects

Local shared objects provide the most efficient way to store temporary data while your product is
running. Use local shared objects to store data for your application, pod, or agent, such as the
information that is currently displayed.

Because the shared object is locally persistent, the data that you save in it remains intact when the
application stops running. The next time the application runs, it can retrieve the values it saved
for the shared object when the application stopped. Alternatively, you can set the shared object’s
properties to null before the application ends, so the values are cleared.

Local file access

The File Input/Output API lets Central applications access files on the local disk. Central
applications do not have complete access to the user’s local files. Instead, the FileReference object
provides access to files in the following secure ways:

• Files may be chosen by the user using the system file dialog box. This allows access to any file
on the user’s computer, but only with confirmation from the user.

• Files in the local Internet cache may be opened for reading and writing without any interaction
from the user. New files can be created, and data can be stored in the cache. These files are
generally available from session to session, but they may be deleted if the local Internet cache
becomes full or if the user clears the cache.

• Files may be downloaded from the Internet and placed anywhere on the user’s disk. The user is
prompted to choose a location for the downloaded file.

By limiting local access to files in these ways, the user can be assured that their files are never read
or written without their permission. For more information, see “FileReference object”
on page 238.

Local Internet files

When a user installs Central, Central creates a local Internet directory for caching Internet files on
the user’s machine. You can store any file type in this directory, except for files that are considered
unsafe (.ad, .hlp, .msi, .vb, .adp, .hta, .msp, .vbe, .asp, .inf, .mst, .vbs, .bas, .ins, .pcd, .vsd, .bat,
.isp, .pif, .vss, .chm, .js, .reg, .vst, .cmd, .jse, .scr, .vsw, .com, .lnk, .sct, .ws, .cpl, .mdb, .shb, .wsc,
.crt, .mde, .shs, .wsf, .exe, .msc, .url, and .wsh.).

Through preferences, the user can remove these files at any time. After the URL is added to the
cache, Central retrieves that data from the cache rather than from the web. You can set an
expiration parameter to refresh this data.
Typical data storage and access techniques 29

Sharing data

Sharing data between application parts When you want to share data among parts of an
application group, such as an application, pods, and agent, use LCService, LCDataProvider, or
localConnection objects. For more information about using these objects, see “Passing data
among product parts” on page 47.

Sharing data across applications Central includes a feature called Blast that allows users to
share selected data in one application with other applications installed in Central. For example, a
user shopping for music can send data about a CD to another application that provides reviews of
CDs. The Blast button appears in the status bar of the application window when a data item is
selected. Central contains a global clipboard that stores recently used data, which the user can
paste into another application with the Blast button. The Auto Blast option allows users to
automatically broadcast the current selection to all other applications. For more information
about using the Blast feature, see “Using the Blast feature to share data across applications”
on page 76.

Sharing updates with the user

Use notices to send data updates through the user interface. For more information, see Chapter 6,
“Creating Notices,” on page 101.

Accessing remote data

Central applications can access data on remote servers by reading XML files and calling web
services over the Internet, and by downloading files from any website.

An application can read remote XML files, and their contents are available through the XML
object. This enables quick integration with existing systems by providing a simple XML version
of information, which many systems already support. Applications cannot simply access any
XML file on the Internet, however. If the application tries to access XML files in domains other
than the application’s original domain, the user will be prompted for permission.

The File Reference object lets a Central application download a file from any URL and save it to
a location specified by the user. The application can then read the contents of this file. For more
information about the File Reference object, see Chapter 10, “API Reference,” on page 133.

Central also supports native web services, using standard SOAP and WSDL protocols. Central
provides the easiest user interface layer for web services, enabling very simple development of
good user interfaces. For more information about web services, see “WebService object”
on page 384.

Applications in Central can call web services directly without requiring any additional server-side
functionality, regardless of what technology is used on the server to implement these. You can
attach a user interface to a web service in just three steps using ActionScript:
// 1. Access the web service directly
stockService = new WebService("http://www.flash-db.com/services/ws/

companyInfo.wsdl");
30 Chapter 2: Understanding the Macromedia Central Environment

// 2. Call the web service to get company info
stockRequest = stockService.doCompanyInfo(
 "anyuser", "anypassword", "MACR");

// 3. Handle the result when it returns
function stockRequest.onResult(result)
{

stock.companyInfo = result;
}

You might want to transform data on the client after receiving it. Central supports native regular
expressions so that you can manipulate strings and parse HTML. For more information about
using regular expressions, see “Using regular expressions” on page 75.

Sometimes you might not want data to be so open and readable, and Central supports secure
transmission of data. You can transmit information in encrypted form using SSL with HTTPS,
the same technology that browsers support. In Central, information is stored locally in decrypted
form, the same as SWF files and other information on the user’s hard disk. Authentication to
network services is enabled by HTTP challenges for name/password combinations, which are
handled by Central itself. In this way, applications do not have direct access to a user’s
authentication information. You can also securely access web services, with encrypted
communication over HTTPS and authentication provided by basic HTTP challenges. Central
also provides support for implementing more advanced authentication, such as WS-Security
and SAML.
Typical data storage and access techniques 31

32 Chapter 2: Understanding the Macromedia Central Environment

CHAPTER 3
Building a Central Application
 Building an application for Macromedia Central consists of creating one or more SWF files
within the Macromedia Flash authoring environment. The SWF files function as your
application, pod, agent, and icons.

To make a SWF file work correctly in the scripting context of Central, you must include specific
ActionScript code that allows it to communicate with the Central environment. You must add
some ActionScript functions that allow the SWF file to receive events from Central and some
additional ActionScript methods used to send messages to the Central environment.

This chapter describes the steps required to create a Central application and the ActionScript code
that you need to use.

Macromedia Central application development workflow

Development of a Macromedia Central application typically includes the following tasks:

• Defining the application’s functionality
• Identifying the remote data, such as XML or web services, that the application will use
• Creating the main application SWF file
• Creating pod SWF files, if necessary
• Creating an agent SWF file, if necessary
• Creating icons for the application
• Creating a product.xml file for the application
• Registering the application with Macromedia and obtaining a product ID
• Deploying the application on your website
• (Optional) Listing your application in the Central Application Finder

The sections and chapters that follow explain how to complete each of these tasks.
33

Migrating from version 1.0

Macromedia Central 1.5 contains a number of features and enhancements that may affect
applications that you have developed for Central 1.0. The following sections describe the changes
that may affect your application as you migrate it to Central 1.5.

Flash Player 7

Central has migrated to version 7 of Macromedia Flash Player. The two primary features of the
new player are ActionScript 2.0 and support for version 2 of Macromedia Components.

Flash Player 7 also includes the following features:

Mousewheel support Many of the components, such as the ScrollPane, will automatically
respond to the mousewheel. In addition, your application can implement listeners for the
onMouseWheel event.

Context menus Applications can now customize context menus. Your application can remove
most of the default context menu entries, as well as create new entries with custom callback
methods. For more information, see “Providing custom context menus” on page 75.

MovieClipLoader The MovieClipLoader class allows applications to track the loading of
images and movies.

To learn more about Flash Player 7, see www.macromedia.com/devnet/mx/flash/articles/
migrate_flashmx2004.html.

ActionScript 2.0

With the migration to ActionScript 2.0, Central provides advanced object-oriented language
capabilities. ActionScript 2.0 builds on ActionScript 1.0, but also introduces some changes to the
core language that may affect migration of existing applications:

Case sensitivity All aspects of the language are now case sensitive. When existing applications
are compiled with ActionScript 2.0, there may be compile-time or runtime errors if the code does
not consistently refer to a variable or function name with the same case.

Strong typing ActionScript now supports declaration of types for variables and functions. This
allows you to ensure that a particular variable holds a value of a specific type, such as Number or
Object.

New language keywords The keywords class, interface, implements, and extends are
now part of the ActionScript language and cannot be used for variable names.

The Central SDK includes a set of class definitions that can be installed into Macromedia Flash
MX 2004 to support strong typing of Central specific classes. All Central classes are installed as
members of the mx.central package.

Version 2 components

Central 1.5 introduces support for the second generation of components, sometimes referred to as
the “v2 components.” The Central SDK provides an extension package for Flash MX 2004 that
includes the components available to Central applications.
34 Chapter 3: Building a Central Application

http://www.macromedia.com/devnet/mx/flash/articles/migrate_flashmx2004.html
http://www.macromedia.com/devnet/mx/flash/articles/migrate_flashmx2004.html

These new components offer improved performance and greater flexibility in styling and
behavior. The API for the components has changed, and applications must be compiled for
ActionScript 2.0 to use the new API. You must address the following issues when you migrate to
the new components:

Direct access to properties Component properties are now directly accessible using properties
rather than methods. For example, to set the label property of a button, you must write
button.label = "Submit" rather than button.setLabel("Submit").

New event model Event listeners should be used to handle events such as mouse clicks and
keyboard entry. Use the addEventListener() method on most Components instead of calling
setChangeHandler().

Intrinsic classes ActionScript 2.0 requires intrinsic classes to be installed in order for the
compiler to be able to enforce strict types. The Central 1.5 SDK includes a set of intrinsic class
definitions that must be installed in Flash MX 2004 so that the compiler can recognize the
Central components when strict typing is used.

New component names Many of the components have changed names and have dropped the
“M” prefix in their class names. For example, MPushButton is now Button. Other components
have been replaced with completely different components. For example, the MCalendar
component has been split into DateField and DateChooser. For information about updates to
components, including which components have been deprecated, see “Component changes in the
Macromedia Central SDK” in Building Central Applications with Components.

Central 1.5 features

Some of the key new features include:

Local file access Central applications can now access files on the local disk. Files can be
created in the local Internet cache, or users can choose one or more files for the application to use.

File upload and download Applications can download files from a remote server and store
them locally on the disk. They can also upload files from the disk to a remote web server using
HTTP post.

HTTP compression Connections to web servers now automatically support gzip compression
over HTTP. This compression is a part of the HTTP protocol and does not require files to be
compressed with gzip, nor will Central decompress files that are already compressed with gzip.
This reduces bandwidth requirements and occurs transparently whenever a server supports it.

Automatic network detection In the default configuration, Central will attempt to
automatically detect if the user’s computer is connected to the Internet, and update the online or
offline state. Users may have relied on your application working only in online mode. The online
or offline state may change without the user’s intervention. Be sure to test your application
thoroughly in both online and offline modes.
Migrating from version 1.0 35

Central 1.5 changes

Some critical changes for developers include:

Behavior of _root The _root property no longer refers to the root of the entire Central
application window. In the default case, _root refers to the currently loaded SWF file. This is
accomplished with an additional MovieClip property, _lockroot. When your movie clip is
loaded, the _lockroot property of your application’s SWF file is set to true. When an
application refers to _root, Central finds the highest-level MovieClip that has _lockroot set to
true. Central applications should avoid the use of _root and _lockroot. (For details, see
“Central coding conventions” on page 122.)

Application resize behavior Applications cannot define a maximum screen size. The
getMaximumSize() function has been deprecated and is no longer called by Central.
Applications must implement onResize() to ensure that all elements are visible to the user.

Exact domain policy When an application tries to access a URL outside the exact hostname
from which it was installed, the user is prompted to grant permission to the application. For
example, if your application was installed from http://www.mysite.com/central/, it cannot
connect to a server at http://webservice.mysite.com/ without the user granting permission.
For information about configuring the interaction of the permission dialog box, see “Accessing
information across domains” on page 77.

Initializing an application

This Software Development Kit (SDK) comes with a Samples directory that contains a selection
of sample applications. One of these is called StockWatcher. The StockWatcher application comes
with several ActionScript files. The stock.as file contains ActionScript code that initializes the
application in the Central environment when the user selects it from the list of installed
applications. The stock.as file also contains ActionScript functions that are needed to respond to
events that the Central shell passes to the application. These functions and events are described in
the next section.

To properly initialize your application and allow it to communicate with the Central shell, you
must initialize the SWF file in ActionScript. The initialization depends on the type of SWF file
you are creating:

• In an application SWF file, call mx.central.Central.initApplication(appSWF, app);
• In a pod SWF file, call mx.central.Central.initPod(appSWF, pod);
• In an agent SWF file, call mx.central.Central.initAgent(appSWF, agent);

The initialization call should be at the end of the initialization code. This call informs Central
that your application, agent, or pod has been loaded.

The StockWatcher application calls this function after it declares its variables and calls its own
initPreferences() function, which is located in the preferences.as file. The StockWatcher
application’s initApplication() call is simple:
mx.central.Central.initApplication(this, stockWatcher);
36 Chapter 3: Building a Central Application

The two parameters of the initApplication() method (this, stockWatcher) are references
to the Flash SWF (application) instance and the callback object, respectively. The callback object
is the ActionScript object that contains the functions Central can call to pass events and
information to the application, pod, or agent. Central looks for the callback functions in this
object. These functions are described in “Implementing the application methods” on page 37.

When Central receives the initialization call, it responds by calling the onActivate() function in
the callback object you specified in the initApplication() call. This function is the first of
several that you should include in your SWF file ActionScript code to make it possible for Central
to communicate with the SWF file. The next section describes these functions.

The initApplication() call should be the last method called as part of an application’s startup
code. It is recommended that the onActivate() function be defined before the
initApplication() call is made.

Implementing the application methods

After your application registers itself with the Central environment using
Central.initApplication(), Central begins sending it events and information. For your
application to respond to these events, you must implement most methods in the Application
object in your application’s ActionScript code. The entire set of Central methods is described in
Chapter 10, “API Reference,” on page 133. If you use ActionScript 2.0 to implement the
mx.central.Application interface, you must declare all methods described in the following table.

A well-behaved Central application contains the following methods of the Application object:

Function name Description

onActivate() Called by Central each time an application is displayed in the application
window. The function passes the callback object and other initialization
information to the application.

onDeactivate() Called by Central each time the user shuts down the application by selecting a
different application, closing the application window, or quitting Central.

onNetworkChange() Called by Central whenever the user changes the online or offline status of
Central. Central passes this status information to the application.

onResize() Called by Central whenever the Central application window is resized.

getMinimumSize() Called by Central to request the application’s minimum size, in pixels. Central
resizes the application window to accommodate the application if necessary.

onNoticeEvent() Called by Central when a notice is dismissed.

showPreferences() Called by Central when the user selects the ApplicationName > Preferences
menu item.

onUninstall() Called when the application is being uninstalled from Central.
Implementing the application methods 37

When implementing these methods, place them at the top level of the object instance passed as
the second parameter to the initApplication() method. In previous versions of Central, it was
recommended to place these functions at the top level of your SWF file. In Central 1.5 and later,
you should use ActionScript 2.0 to implement these methods using the mx.central.Application
interface, as described in the next section.

Many of these functions are demonstrated in the StockWatcher application or the FirstApp
application provided with this document. For more information about these methods, see
“Application object” on page 171.

Implementing mx.central.Application

ActionScript 2.0 allows you to use strong typing to ensure that you use the API correctly. In
Central, the mx.central.Application interface provides a set of methods that your application
object must implement. By implementing this class, the compiler can check your code to ensure
that you have the correct methods with the correct types before you even run your application. To
implement this class, you must install the Central intrinsic classes, which are a part of the
Authoring Extensions packaged with the SDK.

Your class must be written in a separate ActionScript file with the same name as the class itself.
For instance, if your Application class is called MyCentralApp, you must store your class in a file
called MyCentralApp.as.

Your class should be declared with the implements keyword, and should contain all the methods
in the Application interface. For example:
class MyCentralApp implements mx.central.Application {

 // member variable required to store a reference to the current shell
 var gShell:mx.central.Shell;

 function MyCentralApp()
 {
 // constructor initialization here
 }

 function onActivate(shell:mx.central.Shell, appID:Number, shellID:Number,
 baseTabIndex:Number, initialData:Object):Void
 {
 // store the shell for later
 gShell = shell;
 }

 // implement the other methods here
 // ...
}

After you implement the mx.central.Application class, you need to instantiate the class and notify
Central that it is available. The following two techniques work:

Instantiate the class with ActionScript In Frame 1 of your application, create an instance of
your class using new and then pass this instance as the second parameter to
mx.central.Central.initApplication().
38 Chapter 3: Building a Central Application

The following example uses the MyCentralApp class:
var myApp:MyCentralApp = new MyCentralApp();

// initialize Central, with myApp as the listener object
mx.central.Central.initApplication(this, myApp);

This technique allows you to pass parameters to the class constructor when the class is
instantiated. It also allows your class to exist independently of any user interface.

Attach the class to a symbol To use this technique, you need to create a special symbol in your
application SWF file that will correspond to your class.

To create a special symbol in Flash MX 2004:

1. Create a new symbol in your application’s library with View > New Symbol. Enter a name for
the symbol.

2. Right-click the symbol and click Linkage.

The Linkage Properties dialog box opens.
3. Select the Export for ActionScript check box.

4. Enter the name of your class in both the text boxes for Identifier and AS 2.0 Class.

5. Click OK.

6. Drag the empty symbol onto the Stage.

To ensure that mx.central.Central.initApplication() is called when your application
starts, you must add the call to the constructor for your class.

For example, the constructor for MyCentralApp must be changed as follows:
function MyCentralApp()
{
 mx.central.Central.initApplication(_root, this);
}

The first parameter passed to mx.central.Central.initApplication() refers to the
application SWF file, and the second parameter is the current instance of the class.

This technique allows the Central Player to instantiate your class when your SWF file is
initialized. It ensures that all your code is contained in your class file and does not require any
code in Frame 1 of your application. It also prevents you from passing any parameters to your
class, because Central instantiates the class automatically.

When implementing agents and pods, you can use the mx.central.Agent and mx.central.Pod
interfaces.

Using the onActivate() function

The onActivate() function is called by the shell when the application is about to be displayed in
the application window. Central uses the onActivate() function to pass initialization
information to your application, including a callback object you can use to send commands to the
Central shell. Without this callback object, you cannot use any Central commands.
Implementing mx.central.Application 39

When Central calls your application’s onActivate() function, it passes five parameters to it. The
first is the shell callback object reference that you use as the object for all subsequent calls to the
Central shell’s methods. You should assign this reference to a variable so that you can use the
reference for all your subsequent calls to the shell’s API.

In the following example, onActivate() assigns the shell callback object to the variable gShell
and then calls the shell’s setStatus() function:
function onActivate(shellRef:mx.central.Shell, appID:Number, shellID:Number,

baseTabIndex:Number, initialData:Object):Void
{

gShell = shellRef;
gShell.setStatus("The onActivate call has been received");

}

The appID parameter provides a unique ID number for the application. This ID is unique to the
application but not to various instances of the application. The ID remains the same for an
application across sessions in Central. By incorporating this ID into the name of a local shared
object, you can use it to create local shared objects that can be shared by multiple instances of
your application. You can store information, such as display state, in these local shared objects.

The shellID parameter provides a unique ID number for the shell (application window) that the
application is running in. By combining the shellID parameter with the appID parameter in a
variable name, you can allow multiple instances of the same application to create per-instance
local connections. You can use these local connections to communicate among applications, pods,
and agents. An application should not use the shellID parameter to create persistent local shared
objects, because the value changes across sessions.

The baseTabIndex parameter is used to provide seamless tab-navigation support. You should set
the tabbing order indexes on your application controls starting at this base index so that there is
no conflict with surrounding application window controls.

The initialData parameter can be used to pass application-specific data to an application. To
define the initial data, include an initialData tag with attributes within the application tag in
the product.xml file. The attributes can have any name you choose, and the value of each
attribute must be a string. To use a number, pass it first as a string and then convert it to a number
with the number() method.

The following XML fragment shows how initialData values can be defined in the
product.xml file:
<agent name="BetaAppAgent" src="agent.swf">

<initialData foo="bar" black="white" good="evil" up="down"/>
</agent>

This XML code results in an object being passed to the onActivate() function with the
following structure:
{

foo: "bar",
black: "white",
good: "evil",
up: "down",

}

40 Chapter 3: Building a Central Application

Include any other initialization code necessary to display an application, including loading data,
making connections, and so on, in the onActivate() function. Do not assume that your
application will receive a loadMovie() event each time it is displayed.

The following onActivate() function is from the StockWatcher application’s stock.as file. It
starts by assigning the shell callback object to the variable gShell, assigning the application ID to
the variable gAppID, and creating a unique string identifying the application by concatenating the
values of gAppName and shellID.
function onActivate(shell:mx.central.Shell, id:Number, shellID:Number,

baseTabIndex:Number, initialData:Object):Void
{

gShell = shell;
gAppID = id;
gAppName += shellID;
textField.tabIndex = baseTabIndex + 1
dataGrid.tabIndex = baseTabIndex + 2
...

}

For more information about this method, see “Application.onActivate()” on page 173.

Using the onDeactivate() function

The onDeactivate() function is called by the Central shell when the application is about to be
shut down. This can happen when the user selects another application to be displayed in the
application window, the application window is closed, or the user quits Central. You should
assume that your application is going to be shut down after this method is called. The
onDeactivate() function is a good place to save data, remove setIntervals, close data
connections, and clear global variables. Be aware that you cannot rely on asynchronous local
connection methods successfully completing if they are called in the onDeactivate() function.

For more information about this method, see “Application.onDeactivate()” on page 174.

Using the onNetworkChange() function

The onNetworkChange(connected) function is called by the Central shell when Central detects
that the network connection has been activated or deactivated. The user can also change the
network connection status (from online to offline and vice versa). Include any code that you want
to execute in response to the status change in this function, such as toggling variables used to
determine whether to use data from the Internet or from the cache. For more information about
caching data, see “Caching data locally” on page 64. For more information about determining
whether there is a network connection, see “Tracking network status” on page 64.

For more information about this method, see “Application.onNetworkChange()” on page 175.

Using the onResize() function

The onResize() function is called by the Central shell when the application window is resized.
In this function, your application should call shellRef.getBounds() to determine the new
window size and adjust its own size to fill the window exactly. The getBounds() method returns
an object with two properties, height and width.
Implementing mx.central.Application 41

For more information about this method, see “Application.onResize()” on page 178.

Using the getMinimumSize() function

Each time your application is displayed in the application window, the Central shell calls the
getMinimumSize() function to determine the minimum size for your application. This function
should return an object that contains two properties representing the minimum width and height
of your application. If a user switches to your application while the application window is smaller
than your specified minimum size, the Central application window expands accordingly. This
function is optional. If your application does not include it, the application window is not
automatically resized.

The following an example uses the getMinimumSize() function:
function getMinimumSize(Void):Object
{

var sObj = new Object();
sObj.width = 400;
sObj.height = 400;
return sObj;

}

For more information about this method, see “Application.getMinimumSize()” on page 172.

Using the onNoticeEvent() function

The onNoticeEvent(event, noticeData, initialData) function is called by the Central shell
when a notice is dismissed. A notice can be dismissed by the user clicking a button in the Notice
dialog box, by the timing out of the notice, or by a call to removeNotice(). An application, or a
pod or agent associated with the application, can use the addNotice() command to create a
notice. Use the onNoticeEvent() function to make your application aware of notice dismissals
and to have it respond appropriately, depending on the nature and purpose of the notice.

The onNoticeEvent() call passes the following three parameters to the function:

• The event parameter describes the method of dismissal. This is an object with a type property
that contains a string with one of the following four values:
close The user closed the notice without clicking the Engage button in the notice.
engage The user dismissed the notice by clicking the Engage button.
timeout The notice was automatically dismissed because of a timeout.
remove The application or one of its parts dismissed the notice by calling
the removeNotice() command.

• The noticeData parameter contains an object that describes the properties of the notice.
These properties are described in detail in Chapter 6, “Creating Notices,” on page 101.

• The initialData parameter allows you to pass data that your application uses to respond
appropriately to the notice event. The nature of this data is determined by you, the developer.
If you decide to use this parameter, pass it as the last object parameter in the addNotice() call
used to create the notice. For more information, see Chapter 6, “Creating Notices,” on
page 101.
42 Chapter 3: Building a Central Application

The following ActionScript fragment is taken from the StockWatcher application included with
this SDK. Its onNoticeEvent() function traces the parameters passed to the function and then
checks whether the event type is "engage".
function onNoticeEvent(event:Object, noticeData:Object,

initialData:Object):Void
{

trace("onNoticeEvent: noticeData=" + noticeData + " initialData=" +
initialData + " event: " + event.type);

// if user clicks the Engage link in the notice, select a symbol
if (event.type == "engage")
{

// add code here for selecting a symbol...
}

}

For more information about notices and their parameters, see Chapter 6, “Creating Notices,” on
page 101. For more information about this method, see “Application.onNoticeEvent()”
on page 176.

Using the showPreferences() function

The showPreferences() function is called by the Central shell when the user selects the
ApplicationName > Preferences menu item. In this function, you should use ActionScript calls
that display a Preferences screen for your application. The ApplicationName > Preferences menu
item is present in the Central UI only when the hasPreferences attribute is set to true in the
application tag in the product.xml file. Local shared objects are a good way to store application-
specific preferences data that must persist between application sessions.

For more information about the Central global preferences, see “Working with preferences”
on page 57. For more information about this method, see “Application.showPreferences()”
on page 182.

Using the onUninstall() function

The onUninstall() function is called when the user uninstalls the application from Central.
(The user selects View > My Applications, or clicks the Central “C” logo in the toolbar, to start
My Applications. Then the user clicks the Uninstall button.)

Include code in the onUninstall() function to clean up any local shared objects created by your
application by setting the objects to zero. Central does not do this object cleanup for you.
However, Central deletes files cached with either the addToLocalInternetCache() method or
the file tag in the product.xml file, when the application that cached them is uninstalled.

For more information about this method, see “Application.onUninstall()” on page 181.
Implementing mx.central.Application 43

Using the shell API in an application

In addition to the initApplication() command discussed earlier (see “Initializing an
application” on page 36), there are several other commands that an application can use to
communicate with the Central shell. These commands allow your application to perform tasks
such as resizing, displaying information in the status bar of the application window, working with
global preferences, and more.

These methods are called on the shell object reference that is passed to the onActivate() method
in the application, as in the following example:
shellRef.requestSizeChange(500, 400)

There are also commands for working with pods, agents, and notices, as well as advanced features
of Central. For more information about working with pods, see Chapter 4, “Creating Pods,” on
page 81. For more information about working with an agent, see Chapter 5, “Creating an Agent,”
on page 93. For more information about working with notices, see Chapter 6, “Creating
Notices,” on page 101. For more information about advanced features of Central, see the later
sections of this chapter.

Resizing the application window

Your application may need to change the size of its display to accommodate additional
information or user interface elements, such as a control panel or detail view. You can resize the
application window when these elements do not fit in the current application window.

To determine the current size of the window, use the shellRef.getBounds() command. Do not
use the Stage object. Because your application appears in the application window, it does not have
access to the full dimensions of the Stage. The getBounds() command returns an array
containing integers for the height and width of the display area, respectively.

To change the size of the application window to accommodate your application’s new size, use the
shellRef.requestSizeChange(width, height) command. Pass integers for the height and
width of the area that you want the application to occupy. Be aware that the window might not be
able to accommodate the requested size, depending on the screen size and other factors. The
Central shell calls your application’s onResize() function when the resize operation occurs. You
should include a getBounds() command in your onResize() function to determine the new size
of the area that your application should occupy in the application window. The getBounds()
command returns the width and height of the application area. The onResize() function is
also a good place to include code that updates the application layout to match the new
window size.

Function name Description

requestSizeChange() Changes the size of the application window. Central responds with a call to
the application’s onResize() method.

setProgress() Displays a progress bar at the bottom of the application window.

setStatus() Displays a string at the bottom of the application window.
44 Chapter 3: Building a Central Application

Writing a layout manager

Central 1.5 introduces new window resizing behavior. Central no longer recognizes a maximum
size for your application window. The user is able to resize the window to any size larger than the
application’s minimum size. If the user stretches the Central shell in one application, the shell
maintains that size as the user switches to other applications (assuming that the shell size is at least
as big as the application’s minimum dimensions). In other words, a user may resize the Central
shell larger than your application’s minimum size, and then switch to your application. Your
application should reposition, or resize, the user interface elements to match the new window size.
To manage the resizing features of Central, your application can contain a layout manager
function.

Note: One possible solution for handling resize changes in your application is to write the application
by using Macromedia Flex, which has a built-in layout manager.

First, consider the behavior for the application when the user either resizes the application
window or switches from another application with a window size bigger than your application’s
minimum size. Examine each screen in the application and determine how you want each area to
behave as the window size changes. You may want some areas to resize and reposition themselves
as the window changes, while others remain the same.

Then, once you have decided on the general behavior for your application layout, create an
onResize() event handler that can cascade the new window size to the elements in your
application.

Note: You may also want to call the onResize() function in your application’s onActivate() function
to make sure that the application layout properly fills the shell window on startup.

Finally, within each area of your application, you need to call the setSize() method for your
components to have them resize to fit the new layout. If your application contains custom
components that you need to resize, you need to write setSize() methods for them as well.

If changes in your application require a larger shell size, you can use
Shell.requestSizeChange(). For information, see “Shell.requestSizeChange()” on page 370.

onResize() function example

The following example from the StockWatcher application, included in the Central SDK, uses
the setSize() method in conjunction with the bounds property in an onResize() function to
adjust the component sizes:
function onResize (Void):Void
{

// make sure to get bounds, rather than stage width/height
var bounds:Object = oShell.getBounds();

// layout the panes: the grid stretches but company info does not.
// this means that the company info moves up and down when the
// grid flexes.
this.fDetailsTab.setSize(bounds.width - (this.fDetailsTab._x*2), null);
this.fDetailsTab._y = bounds.height - this.fDetailsTab._height - 5;

this.fFindTab.setSize(bounds.width - (this.fFindTab._x*2),
Using the shell API in an application 45

 this.fDetailsTab._y - this.fFindTab._y - 10);

// layout content in top area - move buttons around so that
// they spread out evenly when the window gets wider/narrower
var contentbounds:Object = this.fFindTab.getContentBounds();

this.fTossButton._x = contentbounds.xMax - this.fTossButton._width - 5;
this.fAlertsButton._x = this.fTossButton._x - this.fAlertsButton._width - 3;
this.fRefreshButton._x = this.fAlertsButton._x - kDefaultButtonWidth - 5;
this.fUpdated._x = this.fAddButton._x + kDefaultButtonWidth;
this.fUpdated._width = this.fRefreshButton._x - this.fUpdated._x - 5;

fResultsGrid.setSize(contentbounds.xMax - 32, contentbounds.yMax -
fResultsGrid._y - 5);

// layout details in bottom area
// just line up fDetails with fDetailsTab
contentbounds = this.fDetailsTab.getContentBounds();
this.fDetails._y = this.fDetailsTab._y + 13;
this.fDetails.fRemoveButton._x = contentbounds.xMax -

this.fDetails.fRemoveButton._width - 5;

// reposition preferences dialog
if (fPrefs != undefined) {

fPrefs.resizePreferences(bounds.width, bounds.height);
}

}

Displaying status information

You can display a progress bar and a status message in the status area at the bottom of the
application window.

Use the shellRef.setProgress(percent) command to display a progress bar. Set the percent
parameter to the percentage of the progress bar that you want filled. Set the percent parameter
to 100 or more to remove the progress bar. Set the percent parameter to -1 to display a barber
pole animation.

Use the shellRef.setStatus(message) command to display a message in the status bar. Set the
message parameter to the string that you want to display.
46 Chapter 3: Building a Central Application

The following ActionScript code displays the message “Loading Forecast...” in the status bar:
gShell.setStatus("Loading Forecast...")

The status bar displaying a message.

To clear a status message, pass an empty string to setStatus():
gShell.setStatus("")

Passing data among product parts

If you design a Central application with multiple parts, you will probably want those parts to
communicate with each other. For example, you might want the agent to gather data from the
Internet and pass it to the application, a pod, or both.

There are three ways to pass information between application parts. One way is to use the
LCService object implemented in Central to create a “client-server” relationship between one of
the application parts and the others. This structure allows you to pass data by calling handlers on
the “server” from the “clients” and vice versa. These calls can be made synchronously or
asynchronously.

The second way to pass information between application parts is to use an LCDataProvider
object provided by Central. The LCDataProvider object is for storing data that any of your
application parts can access and edit. Methods used to get or edit data in an LCDataProvider
object return results synchronously. The LCDataProvider object is essentially a modified version
of the DataProvider object included with Macromedia Flash.

The third way is to create your own local connections for passing data between application parts.

Communicating using the LCService object

Central provides an LCService object that you can use to create a virtual client-server mechanism
that your application, pods, and agent can use to pass data among themselves. The LCService
object is named for the local connection mechanism that underlies it.
Passing data among product parts 47

The LCService object allows your application, pods, and agent to define functions that associated
application parts can call; for instance, you can set up an LCService object that allows a pod to
call a function in an agent. A typical pattern is to implement the “server” functionality in an agent
and corresponding “client” functionality in the application and pod.

When using the LCService object, you must define a programming interface composed of the
functions that the server and client will implement. After defining the interface, you can create
the object.

LCService objects can be created in synchronous or asynchronous mode. In synchronous mode,
function calls return results immediately, and no other code executes until the function call is
complete. In asynchronous mode, function calls can return results some time after the call is
made, and other code can continue to execute in the meantime. To use asynchronous mode, you
must have callback handlers in place to receive the eventual results of the asynchronous calls.
Depending on the types of functions you define in your interface object, you may prefer one
mode over the other. Functions that take longer to execute, such those that retrieve remote data,
may be more suited to asynchronous mode, whereas short functions that execute rapidly may be
better suited to synchronous mode. In some cases, you may want to use more than one object in
more than one mode.

The following sections describe the steps required for using the LCService object.

Defining the programming interface

The first step in using the LCService object is to define the functions that you want to call on the
“server,” and those that the server can call in the clients. Remember that the client-server
relationship set up with an LCService object is virtual. The server is simply the application part,
such as an agent, that you designate to execute some centralized, server-style code. The “clients”
are simply those application parts, such as the application or a pod, that you designate to call the
methods of the server and respond to the results that those methods return.

To declare which methods are implemented by each side of the local connection, the LCService
object uses the interface object that you created. The server and all clients need to use exactly the
same interface definition. Macromedia recommends that you define the interface in a separate .as
file and use #include to include the file in every other SWF file in your application.

To do this, create a new object with the properties name and interfaces. The name property
should be globally unique and contains the name used to identify the interface. This name is used
by the client and server to determine how to connect to the other side.

The interfaces property contains an array containing two arrays of function names, one for the
client and one for the server. These functions are defined by you.

The following code creates a new object named ITestInterface and defines the method echo()
for the server:
// For simplicity, the following code is stored in a separate file
// named Interface.as

ITestInterface = new Object();
ITestInterface.name = "ITestInterface";
ITestInterface.interfaces = new Array();
48 Chapter 3: Building a Central Application

ITestInterface.interfaces["Client"] = [];
ITestInterface.interfaces["Server"] = ["echo"];

Defining specific interfaces for each LCService object provides an additional layer of security,
because clients can call only the server methods defined in the interface, and vice versa.

Creating asynchronous server-side functionality

The next step is to create a “server-side” LCService object and implement the server-side
functions declared in the interface object. For example, if you decide that your agent will contain
the server-style functionality, you would create the server-side LCService object in the agent.

To create the server-side LCService object, use the Central.LCService.createServer()
method.

When you create an LCService object in asynchronous mode, you need to define functions that
can handle the server’s responses when they are received. This is described in “Creating
asynchronous client-side functionality” on page 50.

The following example, which might be found in an agent, includes the Interface.as file that
defines the interface object and creates a server-side LCService object in the onActivate()
handler:
// ServerAgent.as

#include "Interface.as"

function onActivate(agentManager:mx.central.AgentManager, agentId:Number,
initialData:Object):Void

{
gAgentManager = agentManager;
gTestService = mx.central.LCService.createServer(ITestInterface, this,
false);

}

The createServer() method takes the following three parameters:

• interface A reference to the interface object defined earlier.
• callbackObj The callback object where the server-side methods declared in the interface

can be found. In this case, the callback object is the same object that contains the
onActivate() handler.

• bSync An optional Boolean value that indicates whether the object is in synchronous mode.
A value of false indicates asynchronous mode, and a value of true indicates synchronous
mode. If this parameter is omitted, the default value of false (asynchronous mode) is used.

The part of your application that is acting as the server also needs to implement the server-side
methods. The interface object defined earlier declared a method named echo() for the server.
The following code implements the echo() function, which simply returns the string passed to it:
function echo(echoString:String):String
{

return echoString;
}

Passing data among product parts 49

Now you are ready to implement the client side of the LCService functionality.

Creating asynchronous client-side functionality

To create the client-side functionality, you create another LCService object with the same
interface name, this time using the createClient() method. Remember that you can
implement client-side functionality as many times as needed, such as for an application and its
pod or pods.

The following example creates a client-side LCService object named gTestService in the
application’s onActivate() handler:
// ClientApp.as

#include "Interface.as"

function onActivate(shell:mx.central.Shell, appId:Number, shellId:Number,
baseTabIndex:Number, initialData:Object):Void

{
gShell = shell;
gTestService = mx.central.LCService.createClient(ITestInterface,
String(appId) + "_" + String(shellId), this, false);

gTestService.echo("foobar");
}

The createClient() method takes the following four parameters:

• interface A reference to the previously defined interface object. This must be the same
reference used by the server-side createServer() method.

• id The name of the client. The server side uses this name to route the results of method calls
to the correct client. In this case, a unique name is created from the combination of the
application’s appID parameter and the shellID parameter of the shell that contains it.

• callbackObj The callback object that contains the client side of the interface. In this case,
the callback object is the same object that contains the createClient() call.

• bSync An optional Boolean value that indicates whether the object is in synchronous mode.
A value of false indicates asynchronous mode, and a value of true indicates synchronous
mode. The default is false. For more information about using synchronous mode, see “Using
LCService objects in synchronous mode” on page 54.

It is possible to encounter a situation in which the server side of the LCService object does not yet
exist when the client side of the object is created. For example, this can happen if the server side is
implemented in an agent SWF file and the client side is implemented in an application SWF file.
If the agent SWF file hasn’t fully loaded when the client-side LCService object is created, the
client side has to wait for the server-side object to be created. However, the LCService object has
this waiting functionality built into it, so you don’t have to create it yourself. If the server side is
not created within a few seconds of the client request, the createClient() call eventually fails.

To test the success or failure of the createClient() method, implement a
createClient_Result() and a createClient_Status() handler.
50 Chapter 3: Building a Central Application

Central calls the createClient_Result() handler when the client LCService object has
successfully been created. Central passes the name of the object to the handler. This is a good
place to put code that verifies the name of the object created and then initiates the use of the
object. Attempting to call functions with the object before it is known to exist can cause
unpredictable behavior in your application or pod.

Central calls the createClient_Status() handler when the createClient() method fails to
communicate with the server side and does not generate a client LCService object. Central passes
the name of the object that failed and information about the error to the handler. This is a good
place to put code that verifies the name of the object and the error and that reattempts to create
the object if appropriate.

The following example attempts to create a client LCService object called gTestService, and
implements a createClient_Result() handler and a createClient_Status() handler:
gTestService = mx.central.LCService.createClient(ITestInterface, String(appId)

+ "_" + String(shellId), this);

function createClient_Result(client)
{

if(client == gTestService)
{

gTestService.echo("foobar");
}

}

function createClient_Status(client, status)
{

// Couldn’t connect to the agent; handle the error here
}

The preceding example also includes a call to the echo() method, which is defined as a server-
side method in the interface object that was created earlier. Because the server and client sides of
the LCService object have been implemented, calls to the defined interface can be made.
However, for the client to receive the asynchronous results returned from a call to a method on
the server, it must implement a callback handler for each server-side method that will be called.
These handlers must take the form methodName_Result().

The following code implements a results handler for the echo() method that was called in the
preceding onActivate() handler:
function echo_Result(echoString:String):Void
{

trace("echo_Result = " + echoString);
}

The following code is the entire example from the preceding steps:
// Interface.as

ITestInterface = new Object();
ITestInterface.name = "ITestInterface";
ITestInterface.interfaces = new Array();
ITestInterface.interfaces["Client"] = [];
Passing data among product parts 51

ITestInterface.interfaces["Server"] = ["echo"];

// ServerAgent.as

#include "Interface.as"

function onActivate(agentManager:mx.central.AgentManager, agentId:Number,
initialData:Object):Void

{
gAgentManager = agentManager;
gTestService = mx.central.LCService.createServer(ITestInterface, this);

}

function echo(echoString)
{

return echoString;
}
mx.central.Central.initAgent(this,this);

// ClientApp.as

#include "Interface.as"

function onActivate(shell:mx.central.Shell, appId:Number, shellId:Number,
baseTabIndex:Number, initialData:Object):Void

{
gShell = shell;
gTestService = mx.central.LCService.createClient(ITestInterface,
String(appId) + "_" + String(shellId), this);

}

function createClient_Result(client)
{

if(client == gTestService)
{

gTestService.echo("foobar");
}

}

function createClient_Status(client, status)
{

// Couldn’t connect to the agent; handle the error here
}

function echo_Result(echoString:String):Void
{

trace("echo_Result = " + echoString);
}

mx.central.Central.initApplication(this, this);
52 Chapter 3: Building a Central Application

Looking at LCService in the StockWatcher application

The StockWatcher sample application included with the Central SDK contains an example of an
LCService object being used to communicate between an agent and its application and pod. The
StockWatcher application defines the interface object for its LCService object in a separate
StockInterfaces.as class file. The StockInterfaces class is defined as follows:
/**
 * Method listings for the StockService (agent AIP) and StockClient interfaces.
 */
class StockInterfaces
{

public static var name = "StockWatcherService";

public static var interfaces = {
Client: [

"refreshPods",
"setCompany",
"setLastUpdate"

],
Server: [

"think",
"getLastUpdate",
"stockSearch",
"getCompany",
"addCompany",
"removeCompany",
"updateCompany",
"addRule",
"removeRule",
"saveRule",
"deleteStorage"

]
}

}

The actual Server functions are implemented in the StockService class, and the Client functions
are implemented in the StockWatcherApp and StockPod classes.

The StockService.as file contains the code for creating the server-side LCService object using the
createServer() method. This code creates the LCService object in asynchronous mode:
oStockClient = LCService.createServer(StockInterfaces, this, false);

The first parameter, StockInterfaces, is a reference to the StockInterfaces class presented above.

The StockWatcher application’s onActivate() function, found in the StockWatcherApp.as file,
contains the code for creating a client LCService object using the createClient() method. This
object then communicates with the server-side object in the agent SWF file:
oConn = LCService.createClient(StockInterfaces, sAppName, this, false);
Passing data among product parts 53

The StockWatcher application also includes a StockPod class (defined in the file StockPod.as),
which creates its own client-side LCService object using code identical to that in the
StockWatcherApp class:
oConn = LCService.createClient(StockInterfaces, sAppName, this, false);

Once the StockWatcherApp, StockPod, and StockService objects have been instantiated, the
LCService based on the StockInterfaces class has one server-side object (in the StockService) and
two client-side objects (one each in the StockWatcherApp and the StockPod).

The StockPod class also contains a result callback method for one of the functions in the
LCService interface. Initially the StockPod calls the stockSearch() method on the LCService
object as follows:
oConn.stockSearch(symbol);

Since the LCService connection was opened asynchronously, the results from this call to the
stockSearch() method will be returned to the stockSearch_Result() method in the StockPod
class:
function stockSearch_Result(result:StockItem)
{

setTicker(result);
}

The stockSearch_Result() method receives a result parameter which represents the value
returned by the method that was invoked on the server side of the LCService, which in this case
was StockService.stockSearch() method.

Using LCService objects in synchronous mode

To create synchronous server-side LCService functionality, you would use the same
createServer() method, but specify a value of true for the final parameter, indicating that the
object should be in synchronous mode. For example, if the StockService class used a synchronous
LCService connection, it would create the LCService object like this:
oStockClient = LCService.createServer(StockInterfaces, this, true);

When an LCService object is in synchronous mode, you do not need to use callback handlers
such as stockSearch_Result(). In synchronous mode the result value of a method will be
returned directly from the method call on the LCService object.

For example, if the StockPod class used a synchronous LCService connection, it could get the
result of the server-side stockSearch() method directly, like this:
var oFoundStock:StockItem = oConn.stockSearch(symbol);
setTicker(oFoundStock);
54 Chapter 3: Building a Central Application

Communicating using the LCDataProvider object

Central includes an LCDataProvider object and a DataProviderClass object. Both of these objects
implement an extended version of the DataProvider component that is included with
Macromedia Flash and some Macromedia Developer Resource Kits. The newer
DataProviderClass object supports all the functions that the previous DataProvider component
included, and adds new functions that handle large data sets faster. The DataProviderClass
component is built into Central, so including older versions of the DataProvider component in
your SWF files will add unnecessary size to your application. However, if your application uses
other components that use the older DataProvider component, there are no technical reasons
requiring the code to be updated.

This section describes the basic use of the LCDataProvider object. To use the DataProviderClass
object, simply call new mx.central.data.DataProviderClass(). For information about all of
the methods that the LCDataProvider and DataProviderClass objects provide, see Chapter 10,
“API Reference,” on page 133.

The LCDataProvider object stores data and uses synchronous local connections to propagate data
changes to all clients that subscribe to the object. Those clients can also edit the data. For
example, an agent could contain an LCDataProvider object, and its associated application and
pod could query the data in the object and make changes to it. Changes made by the application
would be propagated to the pod and vice versa.

Creating the client and server parts of an LCDataProvider object is similar to using an LCService
object, but does not require you to specify methods. The LCDataProvider object supports all the
methods of the DataProviderClass object, with one addition: the setData() method. The
setData() method is used to populate the object with an initial data set when the
LCDataProvider object is created. The setData() function takes an array or another
DataProviderClass object as its parameter.

Queries and other commands sent to the LCDataProvider object are synchronous, so they return
their results immediately. No callback handlers are required.

The following sections describe the steps required for using the LCDataProvider object.

Creating the LCDataProvider object

To use an LCDataProvider object, you need to create the “server” part of the object and define a
data set that the object will contain. After the object is created and populated with data, clients
can connect to the object and access or edit the data.

To create the server side of an LCDataProvider object, use the
LCDataProvider.createServer() method.
this.dpFoodList =

mx.central.data.LCDataProvider.createServer("com.mydomain.food_list");

The createServer() method requires a name parameter. This same name string is used by the
clients to connect to the LCDataProvider object. Macromedia recommends that you use fully
qualified names that have a high probability of being unique. This way, you can avoid
inadvertently using a name that is also used by another Central application.
Passing data among product parts 55

Next, you can add data to the object with the setData() method. LCDataProvider objects can be
populated with an array or with another DataProvider object.

The following code creates an array and then sets the data set of the LCDataProvider object to
the array:
// create an array
var foods:Array =

["corn",
"grapefruit",
"chicken",
"soup",
"bread",
"coffee",
"figs",
"lemons"
];

// populate the LCDataProvider object
this.dpFoodList.setData(foods);

The LCDataProvider object is now ready to share data with clients.

Creating the client side of the object

To subscribe to an LCDataProvider object from a separate application part, such as an application
SWF file subscribing to an object in an agent SWF file, you use the
LCDataProvider.createClient() method.

The createClient() method takes two parameters. The first is a unique name for the client.
The second is the name of the LCDataProvider object to subscribe to. This name must be the
same as the name used by the server side.

The following code creates a client LCDataProvider object in the SWF file’s onActivate()
handler:
function onActivate(shell:mx.central.Shell, appId:Number, shellId:Number,

baseTabIndex:Number, initialData:Object):Void
{

// create a unique ID from the appID and shellID
var sClientID:String = String(appId) + "_" + String(shellId);
// create the client side of the LCDataProvider object
this.dpFoodList = Central.LCDataProvider.createClient(sClientID,
"com.mydomain.food_list");

}

After the client side of the object is created, the client can access the data in the object and edit it.

If you are using data viewer components that use data providers, such as the ComboBox, ListBox,
or other components, you can assign the component to use your LCDataProvider object by using
the dataProvider property of the component.
56 Chapter 3: Building a Central Application

In the following code, the LCDataProvider object dpFoodList is used as the data provider for a
DataGrid component and a ListBox component:
this.fDataGrid.dataProvider = this.dpFoodList;
this.fListBox.dataProvider = this.dpFoodList;

You can also edit the data in the object directly by using the methods of the LCDataProvider
object. For more information about these methods, see “LCDataProvider object” on page 271.

For example, you could add an item to your client-side LCDataProvider object when the user
clicks an Add button by calling the LCDataProvider.addItem() method, like this:
this.fAddButton.onRelease = function()
{

// add a string from the Food Name text field
this.dpFoodList.addItem(this.fFoodName.text);

}

When a new item is added to the client side LCDataProvider object, it communicates the new
data to the corresponding server side LCDataProvider object automatically. The LCDataProvider
server object will then broadcast modelChanged events or other events to its listeners accordingly.

Communicating among local connection objects

You can also choose to pass data back and forth among applications, pods, and agents by using
regular LocalConnection objects. For detailed information about working with LocalConnection
objects, see the Macromedia Flash documentation at www.macromedia.com/go/
fl_documentation. Additional information is available from the Flash Communication Server
MX Support Center at www.macromedia.com/go/flashcom_support.

Give your local connection objects unique names by constructing the name from the ID of the
application and the associated shell or the ID of the pod and its associated viewer. For agents, you
can use just the agent ID, since there is only one agent per application. These ID strings are
passed to your application, pod, or agent when the onActivate() function is called.

Product parts such as pods, agents, or applications can query Central for the ID numbers of the
other parts associated with their product, and use those numbers to construct the same local
connection name that is being used by that part. Obtain the IDs by calling getAgent(),
getViewedPods(), or getViewedApplications().

Working with preferences

Within a Central application, you can work with two kinds of preference information. There are
Central preferences that apply to all the applications installed in the Central environment, and
there are application-specific preferences. Central provides methods that allow you to query
preference information and store your own preference information.
Working with preferences 57

http://www.macromedia.com/go/fl_documentation
http://www.macromedia.com/go/fl_documentation
http://www.macromedia.com/go/flashcom_support

Central preferences

The Central preferences are available when the user selects View > Preferences. The Preferences
dialog box consists of three panels: General, Identity & Location, and Advanced. By default, the
General panel is visible when the dialog box is first opened. The currently active panel is
remembered between editing sessions. When the user returns to the Preferences dialog box
after closing it or quitting Central, the Preferences dialog box displays the panel that the user
viewed last.

Changes to items in the Preferences dialog box are committed when the user clicks the Done
button in a Preferences panel or quits Central entirely. The user can click the Cancel button to
cancel the editing operation and discard the changes.

The General panel

The General panel allows the user to toggle the Check for Updates and Launch Central on
Startup settings. When the user selects Automatically Check for Updates, Central checks for
updates once each week. In addition, the user can click the Check Now button to immediately
download any available updates to the Central environment.

The General Preferences panel

The Identity & Location panel

In the Identity & Location panel, users can view and manage their identity information (name,
e-mail address, and so on) and location information (country, city, zip code, and so on). The user
can also define separately named locations, and choose which applications have access to this
information. The user can save any number of locations by adding and defining them
individually. A location is valid even if the user does not define all the information for it.

The Identity & Location panel also includes a list of all currently installed applications. The user
can select an application in the list and specify how much identity information is exposed to it.
The default setting is None.
58 Chapter 3: Building a Central Application

Through the Location preferences, users can allow applications access to location information.
For example, a weather application might use this information to display a pop-up menu of
weather forecasts for all the locations that the user has specified in the preferences.

The Identity & Location Preferences panel

The Advanced panel

The Advanced panel gives the user control over local Internet files, background tasks, and site
permissions.

The Local Internet Files setting lets users set a global cache storage limit for applications installed
in Central. This limit applies to the total space consumed by files cached by all applications
installed in Central. When a user increases the cache storage limit, the new limit applies to all
applications and domains. However, this limit applies only to files cached with the
addToLocalInternetCache() method, and not to files cached at installation time with the file
tag in the product.xml file.

The Background Tasks setting determines whether applications are allowed to run agents in the
background. If the user turns off this setting, your agent will not be able to run.
Working with preferences 59

The Site Permissions settings determine whether applications have access to URLs outside their
original host domain. The list box displays the domains for applications currently installed in
Central (except macromedia.com). Users can select domains from the list box and specify whether
to grant them restricted or unrestricted access. Users who select the Ask for Approval Before
Accessing Other Sites setting (the default) grant or deny access through dialog prompts
encountered in the normal application workflow. The Access Privilege Confirmation dialog box
appears when an application attempts to access the information from another domain. If the user
has already granted the necessary permissions, the dialog box does not appear.

The Advanced Preferences panel

For more information on access privileges in Central, see “Accessing information across domains”
on page 77.

Accessing Central preferences from an application

Using methods of the shell, you can access preferences and streamline the process by which
users add data to their preferences. The following table summarizes the methods used to
access preferences:

Function name Description

shellRef.get
preferences()

Returns an object containing all the Central preferences.

shellRef.new
LocationDialog()

Opens the New Location dialog box to allow the user to enter a new location.

shellRef.edit
LocationDialog()

Opens the Edit Location dialog box to allow the user to edit an existing
location.
60 Chapter 3: Building a Central Application

To access the settings that the user has chosen in Central Preferences, use the
shellRef.getPreferences() method. This method returns a prefObject object that contains
a property for each setting. The Preferences object has the following properties:

• userData An array containing {firstName: xxx, lastName: xxx, email: xxx}.
• currentLocationIndex An index that indicates the currently selected location.
• locations An indexed array of objects, each containing {label: xxx, address1: xxx,

address2: xxx, city: xxx, state: xxx, zipcode: xxx, phone: xxx, country:
xxx, latitude: xxx, longitude: xxx}.

• agentsEnabled A Boolean value that indicates whether the application can launch an agent.

The following code checks for the value of the agentsEnabled property and launches the agent if
the value is true:
function launchAgent()
{

prefObj = shellRef.getPreferences();
if (prefObj.agentsEnabled = true)
{

shellRef.startAgent();
}

}

The location data returned from getPreferences() is an array of locations. Each location is an
object with label, address1, address2, city, state, zip code, and so on. The following ActionScript
code places the location data from the preferences into a text field named Locals:
var gP = gShell.getPreferences();
var firstName = gP.userData.firstName;
var lastName =þ gP.userData.lastName;
var email = gP.userData.email;
var locationnum = gP.locations.length;
//outputting the location data to a text field called Locals
for (x = 0; x < gP.locations.length; x++)
{

Locals.text += "name: " + gP.locations[x].label + "\n";
Locals.text += "address1: " + gP.locations[x].address1 + "\n";
Locals.text += "address2: " + gP.locations[x].address2 + "\n";
Locals.text += "city: " + gP.locations[x].city + "\n";
Locals.text += "state: " + gP.locations[x].state + "\n";
Locals.text += "zipcode: " + gP.locations[x].zipcode + "\n";
Locals.text += "phone: " + gP.locations[x].phone + "\n";
Locals.text += "country: " + gP.locations[x].country + "\n";
Locals.text += "lat.: " + gP.locations[x].latitude + "\n";
Locals.text += "long.: " + gP.locations[x].longitude + "\n";

}

You can help users add a new location to the location preferences by having Central open the
New Location dialog box. To open the New Location dialog box, use the
shellRef.newLocationDialog(reqFields) method. The reqFields parameter is an array of
field names that you want to specify as required for the new location. Possible field names include
firstName, lastName, email, locAddress1, locAddress2, locCity, locState, locZip,
locPhone, locLat, and locLong.
Working with preferences 61

The following code prompts the user to enter a new address, requiring only 4 of the possible
11 fields:
regFields = ["locAddress1", "locCity", "locState", "locZip"];
shellRef.newLocationDialog(reqFields);

To open the Central Preferences to the Identity & Location panel without opening the New
Location dialog box, pass the string "noDialog" to the newLocationDialog() method. This is a
good way to prompt users to grant the application access to the preferences information if they
have not already done so, since the default for newly installed applications is for them not to have
access to that information. For example:
shellRef.newLocationDialog("noDialog");

You can help users edit existing locations by having Central open the Edit Location dialog box.
To open the Edit Location dialog box, use the editLocationDialog() method. The following
code prompts the user to edit a location:
shellRef.editLocationDialog();

Application-specific preferences

Central applications can store their own application-specific preferences in addition to the
Central preferences discussed in the previous section. To allow the user to access your application-
specific preferences, you can either provide a user interface element for that purpose in your
application or enable the Application Name > Preferences menu item.

To enable the Application Name > Preferences menu item, include the hasPreferences="true"
attribute in the Application tag in the product.xml file, as the following example shows:
<application name="AccuWeather" hasPreferences="true">

When the user selects Application Name > Preferences, Central calls the showPreferences()
function in your application.

Showing and hiding preferences

If you choose to support application-specific preferences with the Application Name > Preferences
menu item, you should implement the showPreferences() function and include code in it that
shows/hides your preferences interface.

One way to do this is to create a symbol with your custom preferences dialog box in it and hide/
show the symbol in the showPreferences() function.

The following example toggles the visibility of the fPreferences symbol:
// showPreferences is called by the shell when user chooses Preferences
function showPreferences(Void):Void
{

// toggle preferences on/off
fPreferences._visible = !(fPreferences._visible);

}

62 Chapter 3: Building a Central Application

The user can close the dialog box by selecting the Preferences menu item again, or you can
include a button in the dialog box that allows the user to close it. If your showPreferences()
function includes code for toggling the visibility of the dialog box, a simple way to implement a
button that hides the dialog box is to call the showPreferences() function from within the
onRelease function for the button.
fPreferences.fDialog.fDone.onRelease = function()
{

showPreferences();
}

Remembering preferences

When your custom preferences are shown, you should populate the fields with the current
preference settings. When the dialog box is closed, you should store the new settings and act on
any changes that the user has made. You can do this through shared objects.

In the following example, a function called noticeMenuHandler saves the selected item from a
component to a shared object:
noticeMenuHandler = function(component)
{

// remember settings
so.data.notice = component.getSelectedItem().data;

}

The following code implements a showPreferences() function that toggles the visibility of the
custom preferences dialog box, and saves or displays the current settings in a shared object named
so.data.notice. In this case, an agent is being started or stopped.
// showPreferences is called by the shell when user chooses Preferences
function showPreferences(Void):Void
{

// toggle preferences on/off
fPreferences._visible = !(fPreferences._visible);
if (fPreferences._visible)
{

// opened dialog box, set UI items to current state
fPreferences.fDialog.fNoticeMenu.setSelectedIndex(so.data.notice);

}
else
{

// closed dialog box, act on changes
switch (so.data.notice)
{

case kNoNotice:
stopAgent();
break;

case kNoteInBackground:
case kBringToAttention:

startAgent();
break;

}
}

}

Working with preferences 63

Tracking network status

Macromedia Central provides methods that you can use to make your application aware of
whether Central is in online or offline mode. Central attempts to detect whether the network is
available and notifies your application when the network status changes. The user can also change
modes by clicking the lightning bolt icon in the application window toolbar. By keeping track of
this information, you can adjust how your application behaves when a change in status occurs.
For instance, when your application detects that the user is offline, it can retrieve information
from the cache instead of from the Internet.

The Central API for tracking this information includes the functions and event handlers in the
following table:

Use the isConnected() function to determine whether Central is in online or offline mode. This
function returns true in online mode and false in offline mode.

Implement an onNetworkChange() event handler in your application, pod, or agent SWF file to
receive an event each time the user toggles the connection state of Central. Central passes a
Boolean connected argument to the event handler that indicates the new connection state. This
handler is a good place to include ActionScript code that responds to this change.

For example, the following onNetworkChange() handler could be used to check remote stock
market data whenever the user goes online:
function onNetworkChange(connected:Boolean):Void
{

gOnline = connected
if(gOnline)
{

updateStockeData();
}

}

Caching data locally

An important feature of Central is its ability to cache data from the Internet locally. Because many
users (for example, laptop users) have only intermittent access to the Internet, the ability of
applications to function smoothly in the presence or absence of an Internet connection is crucial
to the quality of the user experience.

Application part Method (you call) Event handler (Central calls)

Application SWF files Shell.isConnected() onNetworkChange()

Pod SWF files Console.isConnected() onNetworkChange()

Agent SWF files AgentManager.isConnected() onNetworkChange()
64 Chapter 3: Building a Central Application

By caching remote data that your application will use frequently, you can enable it to function
even in the absence of an Internet connection. There are two ways to store remote data locally in
a Central application. You can use local shared objects, or you can use new methods provided by
Central to cache files simply by specifying the URL of the file. In general, local shared objects are
good for caching previously parsed external data sources and other data structures necessary to
your application. URL caching is good for saving files such as JPEG, SWF, MP3, GIF, and other
external data files. Transparent GIF files are supported, but animated GIF files are not.

When you cache remote data locally with the Central methods, Flash Player in Central looks in
the cache first when attempting to retrieve data with any of the ActionScript commands used for
retrieving remote data, such as the loadMovie() command:
movieClip.loadMovie("http://www.myCompany.com/images/image.gif")

In the case of the getURL() method, Central does not access files in the cache, but always displays
the actual live, web-based file in the browser.

Cached files are stored in the following locations:

• Windows 2000 and XP: C:\Documents & Settings\<userName>\Application Data\
Macromedia\Central\#Central\<random directory>\Local Internet\<host.domainName.com>

• Windows Win 98 and ME: C:\WINDOWS\Application Data\Macromedia\
Central\#Central\<random directory>\Local Internet\<host.domainName.com>

• Macintosh: HardDisk:Users:<userName>:Library:Application Support:Macromedia:Central:
#Central:<random directory>:Local Internet:<host.domainName.com>

All directories under these locations are named for the domain name of the URL that was cached.
Because each application is associated with a specific domain, applications cannot read data
cached from domains other than their own.

From the Central Preferences interface, the user can control the amount of local disk space
devoted to cache storage.

When caching files, the files are identified by their URL. Central can now distinguish between
separate hosts within the same domain. For example, Central no longer considers the following
URLs as the same:

• http://www.mydomain.com/pub/myFile.swf
• http://applications.mydomain.com/pub/myFile.swf

You can cache files from multiple hosts within a domain as long as the paths to the files are
unique across these hosts.

Before accessing data, using shellRef.isConnected() to check whether Central is in online or
offline mode can help you decide whether to use cached data or to obtain fresh data from the
Internet.

Note: Application help files cannot be cached for viewing in offline mode.
Caching data locally 65

Caching data dynamically from a URL

In Central, your applications can cache data from a URL simply by specifying that URL in an
ActionScript method. There are three methods that can be used together to manage caching of
remote data in applications, pods, and agents.

The following table lists the commands used by each application part to cache data:

Use the ObjectName.addToLocalInternetCache(strUrl, bOverwrite, expiration)
method to add data from a URL to the local cache. In subsequent requests for that URL by any
application, pod, or agent in Central (but not in Flash Player in a web browser), that data is
retrieved from the cache rather than from the Internet. These requests can take the form of
getURL(), loadVariables(), loadMovie(), or other similar commands. No special techniques
are necessary to access cached data. It is important to realize that these types of methods always
retrieve data from the cache if it is available. To get new data from the Internet, you must either
delete the data from the cache with removeFromLocalInternetCache(), or replace it by setting
the bOverwrite parameter of the addToLocalInternetCache() method to true.

If the bOverwrite argument is set to true and that URL’s asset is already in the cache, the cached
data is overwritten with new data from the URL. The cache used to store this data has a size limit
set by the user in the Central Preferences. The default size is 20 MB, and that space is shared by
all applications in Central. The expiration argument is optional and can take either a date
object or an integer. If this argument is specified, the cached data is removed from the cache on
the date specified by a date object, or after the number of days specified by an integer.

Most file types can be cached with addToLocalInternetCache(). However, some file types are
considered unsafe and cannot be cached. These file types are .ad, .hlp, .msi, .vb, .adp, .hta, .msp,
.vbe, .asp, .inf, .mst, .vbs, .bas, .ins, .pcd, .vsd, .bat, .isp, .pif, .vss, .chm, .jsp, .reg, .vst, .cmd, .jse,
.scr, .vsw, .com, .lnk, .sct, .ws, .cpl, .mdb, .shb, .wsc, .crt, .mde, .shs, .wsf, .exe, .msc, .url, and
.wsh.

It is a good idea to use ObjectName.inLocalInternetCache(strUrl) to check whether a prior
call to addToLocalInternetCache() was successful and whether a URL’s asset is currently in the
cache. This method returns true or false. The ObjectName object can contain a reference to the
shell, Console, or Agent Manager.

Use ObjectName.removeFromLocalInternetCache(strUrl) to remove a URL’s asset from the
local Internet cache.

Application part Methods

Application shell.addToLocalInternetCache()
shell.inLocalInternetCache()
shell.removeFromLocalInternetCache()

Pod console.addToLocalInternetCache()
console.inLocalInternetCache()
console.removeFromLocalInternetCache()

Agent agentManager.addToLocalInternetCache()
agentManager.inLocalInternetCache()
agentManager.removeFromLocalInternetCache()
66 Chapter 3: Building a Central Application

Caching data by using the product.xml file

You can specify, in your product.xml file, URLs to be cached when your application is installed.
Data cached in this way is never deleted from the cache, but can be overwritten by subsequent
addToLocalInternetCache() calls. To cache data by using the product.xml file, include a file
tag inside the application tag. You can cache any file in this manner.

For example, the following code causes the file at http://www.myCompany.com/images/shared/
product_logos/logo.jpg to be cached for the application named Cacher App:
<application name="Cacher App"

src="cacher_app.swf"
width="550" height="400"
help="http://www.myCompany.com/cacher_app_help.html"
enabled="true"
lang="en"
background="#FFFFFF"
version="1"
<icon src="cacher_app.swf" size="40"/>
<file src="http://www.myCompany.com/images/shared/product_logos/logo.jpg"/>

</application>

Note: You can use the initialData tag in the product.xml file to provide initial values for variables in
your application. Because these values are specified in the product.xml file, they can be easily
changed without recompiling your application. This can be useful for testing purposes. However, the
product still needs to be reinstalled in Central for the new values to take effect. For more information
about all the tags in the product.xml file, see Chapter 11, “The product.xml File,” on page 395.

Files cached with the file tag cannot be overwritten with the addToLocalInternetCache()
method. The file type restrictions are the same as for the addToLocalInternetCache() method.

Caching data with local shared objects

You can also cache data locally, using local shared objects. This technique is well suited to storing
data retrieved from web services or other parsed data. To do this, use normal coding techniques
for creating local shared objects. To ensure that your objects have unique names, include your
application’s unique application ID in the name of the local shared object. The unique ID is
passed to your application when Central calls its onActivate() handler.

Local shared objects created by Central applications are stored in the application’s domain
directory in the Central directory. For the specific locations, see “Caching data locally”
on page 64.

The following code creates a new local shared object in the onActivate() handler:
function onActivate(shell:mx.central.Shell, id:Number, shellID:Number,

baseTabIndex:Number, initialData:Object):Void
{

theName = "sharedObj"+=id
so = SharedObject.getLocal(theName)

}

Caching data locally 67

Using web services

The Macromedia Central Player includes ActionScript additions that let you create applications
that interact with web services on remote servers. This means that your applications can easily
access remote logic and dynamic data, such as weather, stock quotes, web logs, and so on, from
remote locations. This can be done in an application, pod, or agent.

Central provides a simple ActionScript interface for accessing these services that eliminates the
need for you to parse the XML response data yourself. You simply create an object and call
methods on that object. Your ability to use these web services depends on your knowledge of the
methods they contain.

Central provides support for web services based on the Simple Object Access Protocol (SOAP) as
well as XML Remote Procedure Call (XML-RPC). The ActionScript for each is very similar.

Interacting with SOAP-based web services

This section describes the procedures used to create a SOAP-based web service object and to call
the methods of the web service. Code samples are provided. For more information about each
object and method, see Chapter 10, “API Reference,” on page 133. The Central SOAP Web
Service API supports SOAP 1.1 and WSDL 1.1.

The SOAP-based Web Service API uses a Web Service Description Language (WSDL) file,
composed of XML, to create a web service object. To create a web service object, you must know
the URL of the WSDL file that describes the web service. The web service object contains a
parsed version of the WSDL file and allows you to call the methods of the web service directly on
the object. Because each method call to a web service object is asynchronous, it returns a callback
object. To handle the response to a method you call on the web service object, you define
functions for the returned callback object.

To create and use a SOAP-based web service object:

1. Specify the URL of the WSDL file that describes the web service you are going to use:
var wsdlURL = "http://www.myCompany.com/services/ws/companyInfo.wsdl";

2. Create a new web service object with the WDSL file:
myWebService = new WebService(wsdlURL);

This causes Central to download the WSDL file, parse it, and create a web service object
containing all the methods of the web service. There are two possible results of this call. If it is
successful, the onLoad() function of the web service object is called. If it fails, the onFault()
function of the web service object is called.

3. (Optional) Implement an onLoad() function for the web service object. Central calls this
function when the WSDL is parsed and the object has been created. The onLoad() function is
a good place to put code that you want to execute after the parsing of the WSDL file is complete.
Central passes the WSDL document to the onLoad() function.
// optionally handle the WSDL loading event:
myWebService.onLoad = function(wsdl)
{

wsdlField.text = wsdl;
}

68 Chapter 3: Building a Central Application

4. (Optional) Set SOAP headers for the web service. SOAP headers are used by advanced web
services to apply security, transactions, and other metadata that integrates with the SOAP
operation itself. If you want to use headers, you need to provide the XML yourself. Many
proposed standard SOAP headers can be found at websites such as the Web Services
Interoperability Organization (www.ws-i.org) and OASIS (www.oasis-open.org), in the form of
specifications such as WS-Security, WS-Addressing, and so on.

You add SOAP headers with the addHeader() command:
var myHeader = new XML(headerXMLSource);
myWebService.addHeader(myHeader);

5. Call a method of the web service. You do this by simply calling the method on the web service
object that you created. All method calls on web service objects return an asynchronous callback
object, so set a variable to contain the callback:
// method invocations return an asynchronous callback
myMethodCallback = myWebService.methodName(parameter1, ... parameterN);

If you call methods on the web service before Central has finished creating the object, those
method calls are queued until the object is created.

6. Define an onResult() function on the callback object to receive the output that is returned
from the method call. Central converts the XML return value into an ActionScript object
automatically.
// handle a successful result
myMethodCallback.onResult = function(result)
{

// receive the SOAP output, which has been converted to an
// ActionScript object
myOutput = new object()
myOutput = result;

}

The following is the complete example from the preceding procedure:
var wsdlURI = "http://www.flash-db.com/services/ws/companyInfo.wsdl";
myWebService = new WebService(wsdlURI);

// optionally handle the WSDL loading event:
myWebService.onLoad = function(wsdl)
{

wsdlField.text = wsdl;
}
// method invocations return an asynchronous callback
myMethodCallback = myWebService.methodName(parameter1, ... parameterN);

// handle a successful result
myMethodCallback.onResult = function(result)
{

// receive the SOAP output, which has been converted to an
// ActionScript object
myOutput = new object()
myOutput = result;
// next, do something with the result data...

}

Using web services 69

The following tables summarize the Web Service API and SOAPCall API:

Web Service API

SOAPCall API

API element Description

new WebService(wsdlURI,
logObject (optional),
proxyURI (optional))

The WebService constructor requires a WSDL URL. It can
optionally accept a Log object (see “Log API” on page 73) and
a proxy URL.
The proxy URL can be used in any instance when the SOAP
and WSDL traffic should be routed through some intermediary
(such as a TCP monitor or management system) rather than
pointed directly at the service endpoint.

void onLoad(wsdlDocument) Callback that is called when the web service has successfully
loaded and parsed its WSDL file. Operations can be invoked in
an application before this event occurs, but in this case they are
queued internally and not actually transmitted until the WSDL
has loaded. The parameter is the WSDL XML document.

void onFault(fault) Callback that is called when an error occurred during WSDL
parsing. The web services features convert parsing and network
problems into SOAP faults for simple handling. The fault
parameter is an object version of an XML SOAP fault (see
“Error-Handling API” on page 72).

SOAPCall myMethodName(param1,
...paramN)

Invokes a web service operation as a method directly available
on the web service object. For example, if your web service has
the method getCompanyInfo(tickerSymbol), invoke
myservice.getCompanyInfo(tickerSymbol).
All invocations are asynchronous and return a callback object.
This callback object is a SOAPCall object that provides
functions for handling results and errors on the invocation (see
the following section).

API element Description

SOAPCall The object type of the callback returned from all web service
invocations is SOAPCall. These objects are normally not
constructed by developers, but instead are constructed
automatically as a result of WSDL parsing and stub generation.
The SOAPCall object has a great number of properties and
functions to handle encoding, decoding, and operation
invocation that are not visible to developers. Only the public
SOAPCall methods are described here.

property XML : request The request property contains the XML object that represents
the current SOAP request.

property XML : response The response property contains the XML object that represents
the most recent SOAP response.
70 Chapter 3: Building a Central Application

Handling SOAP web service errors

Errors can occur when you create a web service object and when you call methods on the object.
When you create the web service object, you should define an onFault() function for the object.
This function is called only if an error occurs as a result of the new webService(WSDL) call. This
can happen if the WSDL file is not found or if it cannot be parsed successfully.

When you call a method on the web service object, you should define an onFault() function for
the callback object. This function is called only if an error occurs as a result of the method call.

Both types of errors pass a SOAPFault object to the onFault() function that is called. The
SOAPFault object has five properties:

• faultcode A string that contains a short, coded name for the error.
• faultstring A string that contains a human-readable description of the error.
• detail Application-specific information associated with the error, such as a stack trace or

other details returned by the web service engine.
• element An XML object that represents the XML version of the error.
• faultactor A string that contains the source of the error. This is optional if no intermediary

code is involved in the web service transaction.

The following onFault() function for the web service object displays the faultstring text in a
text field:
myWebService = new WebService(wsdlURI);

function myWebService.onFault(fault)
{

ErrorOutputField.text = fault.faultstring;
}

The following onFault() function is defined for the callback object returned from a web service
method call:
myCallbackObject = myWebService.methodName();

function myCallbackObject.onFault(fault)
{

ErrorOutputField.text = fault.faultstring;
}

The following is a complete example, including fault checking:

void onResult(result) Callback that is called when a method has been successfully
invoked and returned. The result is the decoded ActionScript
object returned by the operation (if any). To get the raw XML
returned instead of the decoded result, you could access the
SOAPCall.response property.

void onFault(fault) Callback that is called when a method has failed and returned an
error. The fault parameter is an object version of an XML
SOAP fault (see “Error-Handling API” on page 72).

API element Description
Using web services 71

var wsdlURI = "http://www.flash-db.com/services/ws/companyInfo.wsdl";
myWebService = new WebService(wsdlURI);

function myWebService.onFault(fault)
{

ErrorOutputField.text = fault.faultstring;
}

// optionally handle the WSDL loading event:
myWebService.onLoad = function(wsdl)
{

wsdlField.text = wsdl;
}

// method invocations return an asynchronous callback
myMethodCallback = myWebService.methodName(parameter1, ... parameterN);

// handle a successful result
myMethodCallback.onResult = function(result)
{

// receive the SOAP output, which has been converted to an
// ActionScript object
myOutput = new object();
myOutput = result;

}

Error-Handling API

API element Description

SOAPFault The type of error object returned to
webServiceObject.onFault() and callbackObject.onfault()
functions is a SOAPFault object. It is not constructed directly by
developers, but is returned as the result of a failure. This object is
an ActionScript mapping of the SOAP fault XML type. The
following are the properties of the SOAPFault object.

string : faultcode The short standard QName describing the error.

string : faultstring The human-readable description of the error.

string : detail The application-specific information associated with the error,
such as a stack trace or other information returned by the web
service engine.

XML : element The XML object representing the XML version of the fault.

string : faultactor In a messaging scenario where one or more applications (or
intermediaries) handle or perform additional processing on the
SOAP message before it reaches its ultimate destination, the
faultactor attribute is used to identify which of these
applications caused the fault.
72 Chapter 3: Building a Central Application

You can log the events that take place in relation to a web service object by creating a Log object
and passing the object as a parameter to the new webService() constructor. When you create the
Log object, you can define the types of events that the log records. You can then define an
onLog() function on the Log object that is called each time the log receives a message. This is a
good place to put code that displays the log information for debugging purposes.

The following code defines a Log object, passes it to the web service constructor, and defines an
onLog() function that displays the log message in a field:
myLog = new Log("DEBUG")
var wsdlURL = "http://www.flash-db.com/services/ws/companyInfo.wsdl";
myWebService = new WebService(wsdlURI, myLog);
myLog.onLog = function(message)
{

DebugOutputField.text += message + "\n";
}

Log API

Interacting with XML-RPC web services

In Central, your applications can also interact with web services based on XML-RPC (Remote
Procedure Call). The technique used to interact with these services is very similar to that used for
SOAP-based services. You start by creating an RPCFactory object. After the object is created, you
can call the methods of the RPC-based service directly on the object. These method calls return
callback objects that can receive the results of the method asynchronously.

To use an XML-RPC web service:

1. Specify the URL of the RPC web service that you plan to use:
myRPCUrl = "http://www.myCompany.com/services/RPC/myRPCservice" ;

2. Create a new RPCFactory object from the URL:
myRPCFactoryObj = new RPCFactory(myRPCUrl) ;

API element Description

new Log(logLevel, logName) Creates a Log object that can be passed as an optional
argument to the WebService constructor (see “Web Service
API” on page 70). The logName parameter is optional, and can
be used to distinguish between multiple logs that are running
simultaneously to the same output.
The logLevel parameter is optional. The value of logLevel must
be one of the following. If the value is not set explicitly, the
default Log.BRIEF is used.
Log.BRIEF Primary lifecycle event and error notices are
received.
Log.VERBOSE All lifecycle event and error notices are received.
Log.DEBUG Metrics and fine-grained events and errors are
received.

void onLog(message) Callback that is invoked when a log message is sent to a log.
Using web services 73

3. Invoke a method of the web service by using the createCall() method of the RPCFactory
object. In the createCall() method, you pass the name of the method and any arguments it
requires. The createCall() method returns a callback object that can receive the results of the
web service method asynchronously. To receive those results, you define functions on the
callback object.
myRPCCallbackObj = myRPCFactoryObj.createCall("methodName", Arg1, Arg2) ;

4. Define an onResult() function for the RPC callback object. This function is called when the
results of the web service method call ("methodName" in the previous step) arrive.
myRPCCallbackObj.onResult = function(result)
{

outputTextField.text = result
}

5. Define an onFault() function for the RPC callback object to receive any errors caused by the
createCall() method:
myRPCCallbackObj.onFault = function(fault)
{

debugTextField.text = fault
}

The following is the complete example from the previous procedure:
myRPCUrl = "http://www.myCompany.com/services/RPC/myRPCservice" ;
myRPCFactoryObj = new RPCFactory(myRPCUrl) ;
myRPCCallbackObj = myRPCFactoryObj.createCall("methodName", Arg1, Arg2) ;

myRPCCallbackObj.onResult = function(result)
{

outputTextField.text = result
}

myRPCCallbackObj.onFault = function(fault)
{

debugTextField.text = fault
}

The following tables summarize the XML-RPC API:

RPC Web Service API

API element Description

new RPCFactory(targetURL) Constructor for an RPC factory object that can generate RPC
calls.

RPC createCall(param1...paramN) Creates and invokes an RPC call.
74 Chapter 3: Building a Central Application

RPC Callback Object API

Using regular expressions

Central supports the use of regular expressions, which are groups of symbols used to match
patterns within text. Regular expressions can be used to find and replace strings, remove
characters from text, and test for specific conditions in text. For more information, see “RegExp
object” on page 325. Also, Macromedia has useful information online about the use of regular
expressions at www.macromedia.com/devnet/central/articles/regex_04.html.

Providing custom context menus

Central supports the use of the Flash Player 7 ContextMenu and ContextMenuItem classes.
(For details, see ActionScript Language Reference, or see the online ContextMenu class Livedocs
and the online ContextMenuItem class Livedocs.)

Note: Central differs from the Flash Player 7 implementation of the ContextMenu class in two ways:
Central ignores the ContextMenu.builtInItems property, and Central uses its own logic to determine
which ContextMenu objects are detected or used. The logic that Central uses for ContextMenu
objects considers the TextField, Button, or MovieClip that the user clicks. If a MovieClip and its parent
both have defined menus, Central uses the child’s ContextMenu setting (Flash Player 7 does not
recognize ContextMenu objects set in child MovieClips).

The ContextMenu class provides runtime control over the items in a Central application or pod
context menu. Context menus appear when a user right-clicks (Windows) or Control-clicks
(Macintosh) in the Central application or pod. By default, two variations of the Central context
menu appear: the Edit menu, when the mouse is moved over a form element (the Edit menu
displays items such as Cut, Copy, and Paste), or the Standard menu elsewhere (the Standard
menu displays items such as Settings and Print). You can use the methods and properties of the
ContextMenu class to add custom menu items, to control the display of the built-in context
menu items (for example, Zoom In and Print), or to create copies of menus.

The standard way to modify or create a context menu consists of creating an instance of
ContextMenu, populating it with ContextMenuItem objects, and assigning it to the menu
property of a MovieClip, Button, or Input TextField. The ContextMenu instance can also
provide a callback, which is called before the menu is shown, allowing the user to modify what is
in the context menu.

API element Description

onResult(result) Callback that is called when a method has successfully been
invoked and returned. The result is the decoded ActionScript
object returned by the operation (if any). To have the raw XML
returned instead of the decoded result, you can access the
RPC.rpcResponse property.

onFault(fault) Callback that is called when a method has failed and returned an
error. The fault parameter is an object with properties that map
to the XML-RPC struct type.
Providing custom context menus 75

http://livedocs.macromedia.com/flash/mx2004/main_7_2/00001276.html
http://livedocs.macromedia.com/flash/mx2004/main_7_2/00001282.html
http://www.macromedia.com/devnet/central/articles/regex_04.html

Context menu example

The following example adds a “delete” menu item to an object (myIconMC), sets some of the
default menu items for that object, and provides a menu callback so that the application user can
adjust the menu at runtime:
var itemCallback = function (obj, item)
 {
 if (item.caption == "delete")
 obj.deleteSelf ();
 };

var menuCallback = function (obj, menu)
 {
 if (obj.status == "locked")
 menu.customItems[0].enabled = false; else
 menu.customItems[0].enabled = true; };

var menu = new ContextMenu ();
var item = new ContextMenuItem("delete", itemCallback);
menu.customItems.push (item);
menu.onSelect = (menuCallback);

myIconMC.menu = menu;

Note: Avoid complex computations in the onSelect() callback function. The faster the onSelect()
callback function returns a value, the less delay the user may notice.

Using the Blast feature to share data across applications

The Blast feature of Central provides a way for applications to send user-selected data to other
applications installed in Central. Applications can be designed to listen for this data and respond
to it in useful ways.

For example, a user might look up a concert in an entertainment calendar application and then
select the event data in the application. The user can then select a map application from the Blast
menu to send the selected data to the map application to get directions. The user might also
choose a retail application from the Blast menu to find products related to the performer, such as
concert T-shirts.

Another example might be a movie finder application, in which the user selects a specific movie.
The movie finder application could pass the address of the movie theater to a restaurant finder
application to find restaurants near the theater. The restaurant finder could then pass the address
of a selected restaurant to a weather application to find information about the weather for that
location.

The Blast feature can be implemented in an application to enable the application to send data,
receive data, or both. For detailed information about implementing the Blast feature in an
application, see Chapter 7, “Using the Blast Feature,” on page 105.
76 Chapter 3: Building a Central Application

Accessing information across domains

Flash Player, as it is installed in most browsers, enforces a security sandbox that limits access to
URLs from other domains. Central defines some special rules about when and how that sandbox
is expanded to allow access to external domains from the Central Player. It defines a cross-domain
access facility embedded in the Central controller that monitors the degree of trust a user has
granted to a URL for a specific domain. Users grant applications trust through dialog boxes that
pop up when applications attempt to access URLs from other domains.

Usage scenarios

The following are some usage scenarios that call for access to URLs from other domains:

• An XML news reader that needs access to websites beyond its own domain to get feeds
• A blogger application that needs to use XML-RPC against blog sites all over the web
• A portal application that brings resources (web services, images) together in one application
• Flash Remoting sites that can be accessed across domains

Cross-domain access rules

Resources are accessible on a per-URL basis at the discretion of the user: The user explicitly allows
access through interaction with a dialog box explaining the application’s request for additional
permissions. The user has the following options:

• Grant access to this URL for all subsequent requests in the future.
• Grant access to this and all other URLs requested by this domain.
• Deny access to this URL.

To see and change the cross-domain access granted to a domain, the user opens the Advanced
Preferences dialog box (View > Preferences). The preferences indicate whether a domain is trusted
partially (trust on a per-URL basis) or completely (trust all URLs). The user can switch between
the two settings. When the user changes the setting from trust a single URL to trust all, Central
discards all the previously trusted individual URLs (that is, the trusted state is not remembered if
the user switches back to deciding trust on a per-URL basis).

Cross-domain access preferences information persists across Central restarts by means of a shared
object that Central creates. When the user uninstalls all the applications from a domain, Central
discards its cross-domain access information.

Cross-domain access settings

The Site Permissions setting in the Advanced panel of the Central Preferences dialog box allows
the user to set cross-domain access. From this panel, the user can grant an application access to
information from URLs outside its own domain. For example, an application from the website
www.sportsnews.com might need access to www.football.com.br/southamericancup/
brazilcolombia to provide the latest scores from a match.
Accessing information across domains 77

To maintain the highest level of security, the user is advised to keep the default setting—that is, to
require applications to ask for approval before accessing URLs in an outside domain. The user can
then approve or deny access to outside URLs on a case-by-case basis. Central remembers the
URLs that the user has approved until they are cleared in the Central Advanced Preferences. The
user cannot see this list, but Central automatically checks the approved URLs when an
application tries to access a URL.

If the user selects the Always Allow option, the application can access URLs outside its own
domain without the user’s explicit approval.

The Cross-Domain dialog box

If the Site Permissions setting is set to the default behavior, the user sees the following message
when an application wants access to information from a URL outside its domain:

“An application wants to access information from ‘[site].’”

At this point, the user has the following choices:

• The user can allow access to this URL. Central then remembers this URL and won’t ask about
it again in the future.

• The user can select Always Allow. In the future, this application always has access to any URLs
outside its own domain.

Note: The user can update these choices from the Central Advanced Preferences.

• The user can select Deny. Central then denies the application access. The application must
respond appropriately when the user denies cross-domain access.
For example, suppose that the user requests streaming data that your application gets from
another domain, but then denies your application access to that domain. Your application
should notify the user that the requested data is not available because the user did not allow
access to it.
The following example loads an XML file. When the user denies access to the URL,
XML.onLoad is invoked and the success parameter is false.
var myXML = new XML();
myXML.onLoad = function(success)
{

if (success == false)
{

trace("Could not load XML");
}

}
myXML.load("http://someSite/foo");

When you use the WebServices, LoadVars, XML, or Flash Remoting ActionScript methods to
request a resource from another domain, users of your application are presented with the Cross-
Domain Access dialog box. Any other methods that you use to request a resource from another
domain are bound by the same rules as web-based Flash Player.
78 Chapter 3: Building a Central Application

Bypassing the Cross-Domain dialog box

Applications that load data from multiple domains (including subdomains) force Central to gain
permission from the user to cross domain boundaries. This can be an inconvenience for
applications that load data from many or varying sources (news aggregators, for example). To help
developers write applications that use data from other domains, Central supports cross-domain
policy files as implemented in Flash Player 7 (see “About allowing cross-domain data loading” in
Using Flash). Policy files permit applications to load data from multiple domains, while preserving
strong security rules.

Note: After a policy file is loaded and grants access to a domain, Central continues to use the policy
file until the user shuts down Central. When the user restarts Central, Central rereads the policy files.
Accessing information across domains 79

80 Chapter 3: Building a Central Application

CHAPTER 4
Creating Pods
Macromedia Central applications can include small displays called pods. Pods can be miniature
versions of an application or partial displays of information provided by an application that
appear in the Central Console. Some examples of pod functionality include the following:

• A stock market application that displays continuously updated stock quotes in a pod.
• A weather application that displays auto-updating weather maps or rainfall levels in a pod.
• A directory application that displays a pod from which the user can search for and display

names and phone numbers.
• A shopping application that displays a pod with an updated list of items in a user’s

shopping cart.

Pods can be loaded into the Console by ActionScript in an application or agent, or automatically
when Central starts.S

To function properly in Central, your pod must implement the Central pod API so that it can
communicate with Central and respond to event messages generated by Central. These APIs are
described in the sections that follow.

Creating a pod

Adding a pod to your Central application requires you to build a SWF file for the pod, declare it
in the product.xml file, and implement some functions to initialize the pod and enable Central to
communicate with it.

Building a pod

To build a pod, you create a SWF file for the pod. The pod SWF file must be 170 pixels wide and
can be from 20 to 1000 pixels high. The default height is 100 pixels.

For a good user experience, make sure your application design minimizes the possibility that its
pods will push other pods off the Console. You can do this by keeping the pod height modest and
by not opening excessive numbers of pods.
81

Displaying a pod in Central

Pods can be added to the Console in two ways. A pod can be added automatically when its
application is installed, and pods can be added programmatically while your application
is running.

Displaying a pod when its application is installed

To configure a pod to open when your application is installed, use the pod tag in the product.xml
file. The pod tag lets you specify the name of the SWF file to be used for your pod. The presence
of the pod tag adds the pod to the Central internal list of pods available to your application. This
list of pods appears in the pod menu in the Console. The user can choose your pod from this list.

For the pod to be displayed when the application is installed, the pod tag must include a viewed
attribute set to true (viewed="true"). This attribute tells Central to display the pod
immediately when it is added to the list. If the viewed attribute is set to false, the pod is not
displayed in the Console but is accessible to the user in the Console pod menu.

The following XML code fragment demonstrates the correct use of the pod tag within the
application tag in order to display the pod when the application is installed:
<application name="Sample"

src="sample.swf"
width="550" height="400"
enabled="true"
lang="en"
background="#FFFFFF"
version="1"
<icon src="icons/sample_24.swf" size="24"/>
<pod name="Sample Pod"

src="pod.swf"
height="200"
viewed="TRUE" />

</application>

If you do not want the pod to be accessible in the Console when your application is installed, you
can omit the pod tag and use only the podClass tag described in the next section.

Displaying pods programmatically

An application can be designed to display pods programmatically in response to an event, such as
a user interaction. There are two ways of displaying pods programmatically that correspond to the
two ways of specifying pods in the product.xml file.

A pod that has been specified with the pod tag in the product.xml file can be displayed by calling
the viewPod() method. A pod that has not been specified with the pod tag, but has instead been
specified with the podClass tag, can only be displayed by calling the addPod() method and then
the viewPod() method.
82 Chapter 4: Creating Pods

The main difference between pods that are specified with the pod tag and the podClass tag is that
pods specified with the podClass tag are not available in the Console pod menu or to the
viewPod() method until addPod() has been called. However, using the addPod() method
provides an opportunity to customize the pod by passing parameters to the method. You can
customize the height, title, and initialData properties of the pod.

For example, you might design a pod that displays the scores of all the hockey games being played
today. You might also have a podClass named gameDetail so the user can open up pods for each
of the games she wants to track. Each one could be named for the teams that are playing, and
display details for that game, through the use of the initialData property of pod objects.

The addPod() method creates a pod from a SWF file that is specified in the podClass tag. Once
created, the pod can be viewed with the viewPod() method.

To display a pod that has been specified with the pod tag:

1. Call the getPods() method to get the pod ID for your application’s pod.
The getPods() method returns an array of objects representing the pods that have been added
by the application or its associated agent or pods. Each object contains the following
properties:
■ id A number indicating the internal ID assigned by Central to the pod. This number is

read-only and is assigned by Central rather than the developer.
■ name A string indicating the name of the pod as defined by the name attribute of the pod

tag or the name passed to the addPod() method.
■ className A string indicating the name of the SWF file for the pod as defined by the src

attribute of the pod tag.
■ height A number indicating the height of the pod in pixels as defined by the height

attribute of the pod tag.
■ initialData An optional object containing properties defined by the developer. This

object can be defined and then passed to the addPod() method. For more information
about the addPod() method, see the next section.

The following ActionScript returns the list of pods associated with the application, and sets the
variable currentID to the ID of the first pod in the list. The getPods() method is being
called by the application on the Shell object.
podList = shellRef.getPods();
currentID = podList[0].id;

2. Call the viewPod() method to display the pod.
After the ID of the pod has been determined, the viewPod() method can be called to display
the pod in the Console. The viewPod() method displays a pod that has already been added to
the Central internal list of available pods. The viewPod() method requires the pod ID
parameter that was returned by the call to the getPods() method.
The following ActionScript calls the viewPod() method on the Shell object and passes it the
pod ID returned from the previous call to the getPods() method.
shellRef.viewPod(currentID);

The getPods() and viewPod() methods can be called on the Shell, Console, and
AgentManager objects.
Creating a pod 83

To display a pod that has only been specified with the podClass tag:

1. Define a podClass tag for the pod. The podClass tag includes a name attribute that allows you
to assign a name to the pod and a src attribute that allows you to specify the SWF file to be
used for the pod.

The following XML fragment demonstrates the use of the podClass tag within the
application tag:
<application name="Sample"

src="sample.swf"
width="550" height="400"
enabled="true"
lang="en"
background="#FFFFFF"
version="1"
<icon src="icons/sample_24.swf" size="24"/>
<podClass name="samplePod" src="samplePod.swf" />

</application>

2. Call addPod() to add the pod to the Central list of available pods for the application.

The addPod() method takes an object as a parameter. This object should have the same
structure as the objects in the array returned by getPods(). These objects have the following
properties:
■ name A string indicating the name of the pod. This is the name that will appear in the

pod’s title bar.
■ className A string indicating the name of the class for the pod. This should be the same

as the string defined by the name attribute of the podClass tag.
■ height A number indicating the height of the pod in pixels. You can set a default height

for the pod by including a height attribute in the podClass tag.
■ initialData An optional object containing properties defined by the developer. This

object can be defined and then passed to the addPod() method. For more information
about the addPod() method, see the next section.

When the addPod() method is called, Central adds an id property to the object that describes
the pod. After addPod() has been called, the id property can be accessed as a property of the
object returned by getPods().
The following ActionScript defines an object containing the properties of a pod, and then
passes the object to the addPod() method:
var newPod:Object = new Object();
newPod.name = "samplePod";
newPod.className = "samplePod";
newPod.height = 200;

var currentID:Number = shellRef.addPod(newPod);
84 Chapter 4: Creating Pods

3. Call the viewPod() method to display the new pod.

The viewPod() method can be called to display the pod in the Console. The viewPod()
method displays a pod that has already been added to the Central internal list of available pods.
The viewPod() method requires the pod ID parameter that was returned by the call to the
addPod() method.
The following ActionScript calls the viewPod() method on the Shell object and passes it the
pod ID returned from the previous call to the addPod() method:
shellRef.viewPod(currentID);

The two different approaches to displaying pods can be used together as well. By using both the
pod and podClass tags, you can implement creative ways of using and displaying pods. For more
information about the product.xml file, see Chapter 11, “The product.xml File,” on page 395.

Be aware that there is no limit on the number of pods that can be opened by an application. If
your application opens pods in response to user interaction, it is a good idea to include code that
checks for the presence of a pod before adding another one.

Initializing a pod

When you add a pod to the list of pods with the pod tag or the addPod() method and then
display it with the viewPod() function, Central launches the specified pod SWF file, and the
code in the SWF file begins to execute. To properly initialize the pod, you should include
ActionScript that performs the following tasks:

• Defines a class that implements the mx.central.Pod interface.
• Instantiates the class.
• Calls mx.central.Central.initPod(). This is analogous to the

mx.central.Central.initApplication() call made in an application.
• Implements the onActivate() method to initialize pod variables and start running the pod.

The Hello World sample application in the Central SDK contains a HelloPod class (in the file
HelloPod.as).

The HelloPod class and its instance variables are defined in the HelloPod.as file as follows:
import mx.central.Console;

class HelloPod implements mx.central.Pod {
var oRoot:MovieClip;
var oConsole:Console;
var nPodID:Number;
var nViewerID:Number;
var nPosition:Number;
var nBaseTabIndex:Number;
var nLastTabIndex:Number;
var oData:Object;
Creating a pod 85

And, the HelloPod() constructor method accepts a MovieClip which corresponds to the main
timeline for the Pod:
/**
* Constructor. Saves a reference to the pod's main movie clip for future use.
*/
function HelloPod(mc:MovieClip) {

oRoot = mc;
}

The Central Console calls the onActivate() method in response to the initPod() method. In
this method you store the input parameters and then begin the main functionality of your pod:
/**
* Called by the Shell when our application is loaded.
*/
function onActivate (console:Console, podID:Number, viewerID:Number,

position:Number, baseTabIndex:Number, initialData:Object):Void
{

this.oConsole = console;
this.nPodID = podID;
this.nViewerID = podID;
this.nPosition = position;
this.nBaseTabIndex = baseTabIndex;
this.oData = initialData;

// there is only one tab-able control in this pod
this.nLastTabIndex = baseTabIndex + 1;

}

Once your pod class is defined, you can instantiate it from the main timeline, and then call the
initPod() method to start running the pod in Central. For example:
var pod:HelloPod = new HelloPod(this);
mx.central.Central.initPod(this, pod);

As shown, the first parameter passed to initPod() represents the main SWF for the pod. The
second parameter, set to your HelloPod class instance, represents the event handler for all pod
events.

Central responds to the initPod() method by calling the onActivate() method on the event
handler instance you specified.

Controlling pods

There are several operations you can perform on a pod in addition to simply displaying it.

• To remove a pod, use the removePod() function.
This function can be called from any application part; for example:
shellRef.removePod (podID)
consoleRef.removePod (podID)
agentManagerRef.removePod (podID)

An application does not need to remove pods when it is uninstalled. Central is responsible for
removing all pods installed by an application when it is removed.
86 Chapter 4: Creating Pods

• To get the height that was set for a pod when it was first displayed, use the getHeight()
function.
This function can be called only from the pod:
consoleRef.getHeight()

By returning the original height of the pod, this method makes it unnecessary for you to
duplicate the height information in the pod’s initialData structure.

• To get information about all the pods that have been added by your application, use the
getPods() function.
This function can be called from any application part; for example:
shellRef.getPods()
consoleRef.getPods()
agentManagerRef.getPods()

This function returns an array of podData objects for the pods that this application has added
(including pods added on product installation). For more information about the getPods()
method, see “Displaying a pod in Central” on page 82.

• To get the array of currently visible pods associated with your application, use the
getViewedPods() function.
This function can be called from any application part; for example:
shellRef.getViewedPods()
consoleRef.getViewedPods()
agentManagerRef.getViewedPods()

This function returns an array of objects for each of this application’s pods that are currently
displayed in pod viewers.
Each object contains the following properties:
■ podData An object containing additional properties:

id A number indicating the internal ID assigned by Central to the pod. This number is
read-only and is assigned by Central rather than by the developer.
name A string indicating the name of the pod as defined by the name attribute of the
pod tag.
className A string indicating the name of the SWF file for the pod as defined by the src
attribute of the pod tag.
height A number indicating the height of the pod in pixels as defined by the height
attribute of the pod tag.
initialData An optional object containing properties defined by the developer. This
object can be defined and then passed to the addPod() method. For more information
about the addPod() method, see the next section.

■ viewerID A unique identifier string for the viewer that the pod is currently being viewed
in. This identifier can be used to create individual local connections or otherwise uniquely
identify the pod view.
Controlling pods 87

■ position A number indicating the position of the pod in the Console. Positions are
numbered from the top of the Console to the bottom. This may change over the life of the
pod as the user views more pods or removes viewers.

■ collapsed A Boolean value (true, false) that indicates whether the pod is currently in
the collapsed state. Collapsed pods are still running, but only the title bar is displayed in
the Console.

Implementing the pod API

The SWF file for your pod should contain the following functions for responding to events from
the Console. These functions should be written as a part of a class that implements the
mx.central.Pod interface. For more information about implementing interfaces in Central, see
“Implementing mx.central.Application” on page 38.

The onActivate() function

The onActivate() function is called in your application in response to its
mx.central.Central.initPod() call each time the pod is loaded. A pod gets an onActivate()
message when it is loaded into the Console, and an onDeactivate() message when it is removed
from the Console, when its viewer is switched to another pod, or when Central is shut down.

The following parameters are passed to the onActivate() function:
onActivate (console:mx.central.Console, podID:Number, viewerID:Number,

position:Number, baseTabIndex:Number, initialData:Object):Void

• console Callback object used to call into the Console.
• podID Unique ID for this instance of the pod. The pod uses this value to establish per-

instance connections with other parts of the program group (mini-applications, agents, other
pods) and to allocate per-instance local shared objects for persistence. Pod IDs persist when the
user quits and restarts Central.

Function name Description

onActivate() Called by Central each time a pod is displayed in the application window.
Passes a reference to the Console and other initialization information to the
application.

onDeactivate() Called by Central when the pod is closed, or by the user selecting a different
pod in the viewer, closing the viewer, closing the Console, or quitting Central.

onNetworkChange() Called by Central whenever the user changes the online or offline status of
Central. Passes this status information to the pod.

onNoticeEvent() Called by Central when a notice is dismissed.

getLastTabIndex() Called by Central to determine the last index that the pod uses for tab ordering
for accessibility purposes. This function should return the value of the last index
that the pod uses in determining tab order.
88 Chapter 4: Creating Pods

• viewerID A secondary ID corresponding to the viewer that the pod is in. This value does
not change, even if the position of the viewer changes. This value should be used in
conjunction with podID to create per-actor local connections, but not for shared memory;
viewers from later invocations of Central will have different viewerID values.

• position The position of the pod in the Console. This can be useful if you want the pod to
behave differently depending on its position in the Console.

• baseTabIndex The starting number the pod should use when setting tab indexes
for accessibility.

• initialData Application-specific startup data passed from the application, agent, or pod
that called the addPod() method.

The following code, taken from the StockWatcher application example, includes initialization
instructions that place the arguments passed to the onActivate() function into variables:
function onActivate(console:mx.central.Console, id:Number, viewerID:Number,

position:Number, baseTabIndex:Number, initialData:Object):Void
{

gConsole = console;
gAppName += viewerID;

trace("activate id="+id+" viewerID="+viewerID);

initStorage();
initKeyboardListeners();

// establish local connection to agent for data
gCom = mx.central.data.LCService.createClient(StockLCService, gAppName,
this, false);

// restore last search term
fSymbol.text = gStorage.data.searchFor;
setTicker(gStorage.data.lastResult);

onNetworkChange(gConsole.isConnected());
}

For more information, see “Pod.onActivate()” on page 316.

The onDeactivate() function

The Console calls the onDeactivate() function when the pod is about to be unloaded. The pod
should save any necessary data, close any active network connections it uses, and clear any global
variables and setInterval() methods that it uses. For more information, see
“Pod.onDeactivate()” on page 317.
Implementing the pod API 89

The onNetworkChange() function

The Console calls the onNetworkChange() function when the network status (online or offline)
changes, and passes a Boolean value to the function. A value of true indicates that Central is in
online mode. A value of false indicates that Central is in offline mode. Include code in this
function that helps your pod respond appropriately to the change in status. For more
information, see “Pod.onNetworkChange()” on page 318.

The onNoticeEvent() function

The onNoticeEvent() function is called when a notice created by the application or one of its
parts is dismissed. Central passes the following parameters to the function:

• event A string describing the notice’s method of dismissal.
• noticeData An object containing all the properties of the notice.
• appData An object containing application-specific data that was included when the notice

was created with the addNotice() method.

For more information about these parameters, see Chapter 6, “Creating Notices,” on page 101.
For more information about this method, see “Pod.onNoticeEvent()” on page 319.

The getLastTabIndex() function

Central calls the getLastTabIndex() function to determine the last index used by the pod for
ordering its tab-navigable items for accessibility. This function should return the last index used
by the pod. The last index can be calculated by adding the number of indexes used by the pod to
the baseTabIndex passed to the pod in the onActivate() function. For more information, see
“Pod.getLastTabIndex()” on page 315.

Communicating between a pod and the Console

Pods communicate with the Central environment through the methods of the Console.
A reference to the Console callback object is provided by the onActivate() call when your pod
is loaded.

Pods can perform the following tasks through the Console object’s methods:

• Manipulate other pods.
See “Creating a pod” on page 81.

• Manipulate notices.
See Chapter 6, “Creating Notices,” on page 101.

• Monitor network connection status.
See “Using web services” on page 68.

• Cache remote server data locally.
See “Caching data locally” on page 64.
90 Chapter 4: Creating Pods

• Open the associated application.
Use the Console.loadApplication() method to load the pod’s associated application in the
application window. A pod should load an application only as the result of user interaction.

For a complete list of the methods of the Console object, see “Console object” on page 186.
Communicating between a pod and the Console 91

92 Chapter 4: Creating Pods

CHAPTER 5
Creating an Agent
An agent is an optional part of an application that can be used as a place to implement logic that
is best kept separate from the other parts of an application. This can include code that monitors
remote data for changes, code that updates data displayed in the application or pod, and code that
needs to run continuously. Agents are a good place for this kind of code, because they run
continuously in the background, even when the application is not running in Macromedia
Central. Keeping this kind of logic separate from the other parts of an application allows the
application and any pods to stay synchronized with one another and display up-to-date data.

Even if an application has no obvious need for this kind of background logic, using an agent can
be a good way to ensure that your application’s architecture is robust enough to handle any
functionality you want to add in the future. Using an agent with a simple application can make it
much easier to add a pod later, because the application will already be written to use distributed
logic.

For example, a news application can use an agent to check for new news stories, in the
background, and download those stories for display in the application and pod. The agent can
also raise a notice to the user when stories about a specified subject are received.

An agent is implemented in a Macromedia Flash SWF file, separate from your application SWF
file, that has no user interface and runs only in the background. The agent SWF file is never
displayed on the screen. It is important to carefully regulate CPU-intensive operations you might
want to perform in an agent, because overusing the processor affects the performance of Central
and makes your application unpopular.

Designing an agent

The following are some things to keep in mind when you design an agent:

• Use an agent as a controller for the other parts of an application. This can be a good design for
many types of applications.

• Use an agent to centralize remote data and shared object access functions.
• Don’t overuse the processor. Because agents run in the background along with the agents of

other applications, use care when writing code that taxes the processor.
• Be aware of system resources.
93

• Don’t use setInterval() methods with short intervals.
• Don’t load large amounts of remote data often. Do this only when needed, such as when the

data has changed.
• Let the user configure the extent to which the agent uses the processor, and limit the user to a

reasonable range of values for these settings.

Creating an agent SWF file

An application can have only one agent. If you want to create an agent, build a SWF file for the
agent and place the agent’s ActionScript in frame 1. The agent should include the same functions
as an application or pod, such as the onActivate() and onDeactivate() functions. Implement
these functions as a part of a class that implements the mx.central.Agent interface.

Next, add a reference to the agent in your product.xml file. You can then start and stop that agent
from your application using methods of the Shell object.

The following code shows simple onActivate() and onDeactivate() functions for an agent, as
well as a think() function that is called by a setInterval() method called in the
onActivate() function. This code should be in the MyAgent.as file.
class MyAgent implements mx.central.Agent {

var gAgentMan:mx.central.AgentManager;
var gThinkInterval;

function onActivate(agentManager:mx.central.AgentManager, agentID:Number,
initialData:Object)
{

// remember the agent manager to call functions on it
gAgentMan = agentManager;

// start thinking every 30 minutes
gThinkInterval = setInterval(think, 30 * 60 * 1000);

}

// implement other mx.central.Agent methods here:
// ...

function think()
{

if (gAgentMan.isConnected())
{

// do some action here, like call a web service
}

}
}

The following code should be in your agent SWF file:
var agent:MyAgent = new MyAgent();
// tell Central that the Agent is ready
mx.central.Central.initAgent(this, agent);
94 Chapter 5: Creating an Agent

After you build the agent, you need to add it to your application’s product.xml file. You do this by
adding an agent tag as a subelement of the application tag, declaring the name attribute of your
agent, and specifying the src (location) of the agent SWF file. The value of the src attribute can
be a path that is relative to the product.xml file.

The following XML fragment includes an agent tag that specifies only the relative path to the
SWF file for the agent:
<application name="News Finder"

src="http://www.myCompany.com/NewsFinder/NewsFinder.swf"
help="http://www.myCompany.com/"
enabled="true"
lang="en"
background="#FFFFFF"
version="1"
width="550" height="400">
<icon src="http://www.myCompany.com/icons/icon_32.swf" size="32"/>
<agent name="BetaAppAgent" src="agent.swf"/>

</application>

Starting an agent

You can start agents in two ways. You can set an agent to start automatically when its application
is installed and each time Central is started. You can also start an agent programmatically from
within an application or pod.

To have an agent start automatically when its application is installed and each time Central is
started, add the started="true" attribute to the agent tag in your product.xml file, as the
following example shows:
<agent name="BetaAppAgent" src="agent.swf" started="true"/>

This enables the agent to run whenever Central is running, without the need for any special
ActionScript to start the agent.

To start your agent programmatically, use the startAgent() method. You can call this method
on the Shell or Console object, as the following example shows:
shellRef.startAgent()
consoleRef.startAgent()

Because an application can have only one agent, the startAgent() method does not require any
parameters. When the method is called, Central starts the agent SWF file specified in the
product.xml file. The startAgent() method returns true if the agent starts successfully. If the
agent fails to start, the method returns false. In addition, the startAgent() method returns
false if the agent is already running.

An agent’s started state is preserved when Central exits. Agents that were running when the user
quits Central are started again when Central restarts, and stopped agents remain stopped the next
time Central starts.
Starting an agent 95

To check whether an agent is running, call the getAgent() method and check the started
property of the object that is returned, as the following example shows:
// Make sure the agent is running
var agentData = gShell.getAgent();
if(agentData.started == false)
{

gShell.startAgent();
}

Even started agents are not actually running if the user has disabled background tasks in the
Central preferences. Users can do this by selecting View > Preferences and deselecting the Allow
Tasks to Run in the Background option in the Advanced panel. Your program can check for this
using getPreferences(), as the following example shows:
// Check whether agents are allowed to run
var prefs = gShell.getPreferences();
if(prefs.agentsEnabled == false)
{

// adjust for running without an agent
}

For more information about accessing the Central preferences settings, see “Working with
preferences” on page 57.

When an agent starts, its ActionScript should not assume that the other parts of the application
are already running. The application and pod should not assume that the agent is running, either.
This is because the load order of the parts of an application is not necessarily the same each time
Central starts. To ensure consistent operation, applications, pods, and agents should check that
other application parts are running before attempting to communicate with them.

Use the following methods to determine whether a particular part of your application is running:

• To check whether an agent is running from an application or pod, use getAgent().
• To check whether a pod is running from an application or agent, use getViewedPods().
• To check whether an application is running from a pod or agent, use

getViewedApplications().

Stopping an agent

To stop an agent, use the stopAgent() command. This command can be called from an
application, pod, or agent, as the following examples show:
shellRef.stopAgent()
consoleRef.stopAgent()
agentManagerRef.stopAgent()

Call this function from an application or pod to stop the agent associated with it. An agent can
also call this function to stop itself.

An application does not need to remove agents when it is uninstalled. Central is responsible for
removing all agents installed by an application when it is removed.
96 Chapter 5: Creating an Agent

Determining the status of an agent

To determine the status of an agent, use the getAgent() command. This command can be called
from an application or pod, as the following examples show:
shellRef.getAgent ()
consoleRef.getAgent()

The function returns an object that contains the following properties:

• id A string that indicates the agent’s unique ID.
• name A string that indicates the agent’s name (as specified in the product.xml file).
• src A string that indicates the agent’s src path (specified in the product.xml file).
• started A Boolean value that indicates whether the agent is currently running.
• initialData An object containing the agent’s initial data. This object can have multiple

properties that you specify in the initialData attribute of the agent tag in the product.xml
file. For more information, see “The onActivate() function” on page 98.

For more information about the product.xml file, see Chapter 11, “The product.xml File,” on
page 395.

It is possible for agents to run slowly when a lot of them are installed or the user’s computer is
slow. This condition can cause Central to display a dialog box that says, “A script in this movie is
causing unresponsive behavior, do you want to quit script execution?” If the users selects Yes, all
the agents shut down. When this happens, the agent cannot be restarted until Central is restarted.

Implementing the agent API

The following table describes the functions that an agent SWF file can contain for responding to
events from the Agent Manager. These functions should be written in a class that implements the
mx.central.Agent interface. For more information about implementing interfaces in Central, see
“Implementing mx.central.Application” on page 38.

Function name Description

onActivate() Initializes the agent. Called by Central each time an agent starts. Passes a
reference to the Agent Manager and other initialization information to the agent.

onDeactivate() Called by Central when the agent shuts down.

onNetworkChange() Called by Central whenever the user changes the online/offline status of
Central. Passes this status information to the agent.

onNoticeEvent() Called by Central when a notice is dismissed.

onUninstall() Called by Central when the agent’s application is uninstalled.
Implementing the agent API 97

The onActivate() function

Central calls the onActivate(agentManager, id, initialData) method when the agent is
started and the mx.central.Central.initAgent() call has been made. The following
parameters are passed to the function:

• agentManager A reference to the agentManager callback object. Store this in a variable for
use in calling the methods of the Agent Manager.

• id A unique ID for this agent.
• initialData Application-specific data you can define in the product.xml file to initialize

your agent. To define this data, include an initialData tag as a child of the agent tag in the
product.xml file. The data is defined by including attributes and values in the initialData
tag. The attributes can have any name you choose, and the values must be strings. To use a
number, pass it first as a string, and then convert it to a number with the number() method.
The following XML fragment shows how you can define initialData values in the
product.xml file:
<agent name="BetaAppAgent" src="agent.swf">

<initialData foo="bar" black="white" good="evil" up="down"/>
</agent>

This XML code would result in an object being passed to the onActivate() function with the
following structure:
{

foo: "bar",
black: "white",
good: "evil",
up: "down",

}

For more information about the onActivate() function, see “Initializing an application”
on page 36 and “Agent.onActivate()” on page 138.

The onDeactivate() function

The Agent Manager calls the onDeactivate() function when the agent is to be unloaded, by an
explicit removeAgent() call, by a user selecting Disable Agents in the preferences, or by Central
shutting down. This function is a good place to save any needed data, close network connections,
and remove any global variables or setInterval objects. For more information, see
“Agent.onDeactivate()” on page 139.

The onNetworkChange() function

The shell calls the onNetworkChange(connected) functionwhen the connection status changes.
The function is passed a Boolean value that indicates whether Central is in online or offline
mode. For more information, see “Agent.onNetworkChange()” on page 140.
98 Chapter 5: Creating an Agent

The onNoticeEvent() function

Central calls the onNoticeEvent(event, noticeData, appData) function when a notice
created by the agent’s application or pod is dismissed. For more information about the
onNoticeEvent() function, see “Agent.onNoticeEvent()” on page 141.

The onUninstall() function

Central calls the onUninstall() method in an agent when the associated application is
uninstalled by the user. This is a good place to delete any shared objects or cached files used by the
application. For more information, see “Agent.onUninstall()” on page 143.
Implementing the agent API 99

100 Chapter 5: Creating an Agent

CHAPTER 6
Creating Notices
Macromedia Central can present notices to the user. Notices are a way of conveying important or
timely information to the user in a special area of the Console called the Notice pane. An
application, pod, or agent can invoke a notice.

For example, imagine a news application with an agent that checks for stories in the background,
even while the news application is not running. The user can configure the application to
generate notices when stories about a particular subject appear. The agent checks for new stories
about that subject and generates a notice when it finds one. The notice includes a link that the
user can click to open the application, which displays the story.

As another example, consider a financial application that generates a notice when the price of a
specified stock rises above a user-defined threshold. The notice could simply present the
information, or it could provide a link to open the financial application and display the stock’s
history chart.

Users can choose to disable all notices in Central by clicking the bell icon in the application
window.

This chapter describes the API for creating and responding to notices.

Creating a notice

To create a notice, your application, pod, or agent must implement the Notice API. The
following functions are used to work with notices:

• “The addNotice() function” on page 101
• “The removeNotice() function” on page 103
• “The getNotices() function” on page 103

The addNotice() function

Call this method to create a new notice, as the following examples show:
shellRef.addNotice(noticeData, initialData)
consoleRef.addNotice(noticeData, initialData)
agentManagerRef.addNotice(noticeData, initialData)
101

Pass the following two parameters with the method call:

• noticeData An object containing properties that describe the content and behavior of the
notice. The following are the properties of noticeData:
name A string to be displayed in the notice title bar. If not specified by the developer, the
default "app name Notice" is used.
description A longer string to be displayed in the body of the notice. The default is an
empty string.
timeout An integer that indicates the number of seconds after which the notice is
automatically dismissed. To prevent the notice from being dismissed automatically, set the
timeout property to 0, or leave it undefined.
alert A Boolean value. If set to true, indicates to bring the notice to the user’s attention, by
having the Central icon flash in the task bar (Windows) or bounce in the Dock (Macintosh). If
set to false, the notice is quietly recorded in the Notice pane of the Console. Users can
prevent notices from being brought to their attention by clicking the Mute button in the
Notice pane of the Console.
engage A short string to be displayed in the notice as an engage link. Including an engage
link in a notice provides a way for the user to invoke an action in the application that generated
the notice. If set to null, no engage link is displayed. For example, a news application might
raise a notice when a new news story is found. The notice can include an engage link that
says Read News. When the user clicks the link, Central will call the onNoticeEvent() method
for the news application with the event set to "engage". If the navigate property is set to true,
then the news application also opens and displays the news story.
navigate A Boolean value. If set to true, Central switches to the appropriate application if
the user clicks the engage link in the notice. If set to false, Central does not switch
applications, but still calls onNoticeEvent().

• initialData An object that contains application-specific data that you define. This data is
passed to the onNoticeEvent() functions in your application, pods, and agent when the
notice is dismissed.

The addNotice() method returns a noticeId value that you can use to refer to this notice in
subsequent function calls.

For example, the following code causes an agent to create a list of new news items and notify the
user about them. The notice displays the word Show as its engage link, and has its navigate
property set to true so that the application appears when the user clicks the engage link.
var notice:Object = new Object();

// set name to show how many new applications there are
notice.name = count+" new application";
if (count > 1)

notice.name += "s";

// set body description to a list of recent application names
notice.description = "Recently posted";
for (var i=0; i<count; i++)
{

102 Chapter 6: Creating Notices

notice.description += "\r- "+result.items[i].name;
}

// set engage link name
notice.engageString = "Show";

// specify that the application should open when engaged
notice.navigate = true;

// specify whether notice should be brought to attention
notice.alert = true;

// post notice
noticeID = gConsole.addNotice(notice, {lastcheck: gSearchDate});

The removeNotice() function

Call the removeNotice() function to remove a notice from the Notice pane in the Console, as
the following examples show:
shellRef.removeNotice(noticeID)
consoleRef.removeNotice(noticeID)
agentManagerRef.removeNotice(noticeID)

Pass the notice ID that was returned by the addNotice() function. In the previous example code,
this ID is stored in the noticeID variable. When you call the removeNotice() method, the
onNoticeEvent() function triggers and is passed "remove" as the event parameter.

The getNotices() function

Call the getNotices() function to get a list of the currently active notices in the application’s
program group, as the following examples show:
shellRef.getNotices()
consoleRef.getNotices()
agentManagerRef.getNotices()

This function returns an array of objects, each containing the noticeData and appData
properties.

Responding to notices

To respond to notices, each application, pod, and agent should contain an onNoticeEvent()
function. When the user closes the notice through the engage link or close box, the notice times
out, or the application or one of its parts removes the notice programmatically, the
onNoticeEvent() function is called in each application part that contains it. If your application
is not currently open when the user interacts with the notice, you won’t receive an event. If the
notice.navigate property is set to true, the application automatically starts when the user
clicks the engage link, so you always receive an "engage" event.
Responding to notices 103

Central passes the following parameters to the onNoticeEvent() function:

• event The notice’s method of dismissal. This is an object with a type property that contains
a string with one of the following four values:
"close" The user closed the notice without clicking the notice engage link.
"engage" The user dismissed the notice by clicking the engage link.
"timeout" The notice was automatically dismissed because of a timeout.
"remove" The notice was dismissed by a call to the removeNotice() command by the
application or one of its parts.

• noticeData The object that was included with the original addNotice() command. For
more information about this object, see “The addNotice() function” on page 101.

• initialData The arbitrary data included in the initialData parameter of the
addNotice() command.

• appID The ID of the application that generated the notice.

The following code implements an onNoticeEvent handler that checks whether the engage link
was clicked in the notice, and calls the Search method on the gAppService web service object:
function onNoticeEvent(event, noticeData, initialData, appID)
{

if (event.type == "engage")
{

// if user clicks the engage link in the notice, look for the recent apps
gAppService.Search({createdDate: initialData.lastcheck});

}
}

Guidelines for using notices

To provide a pleasant user experience, keep in mind the following guidelines when you
implement notices in your applications:

• Invoke notices only when necessary. Try to avoid creating so many notices that they become
distracting.

• Provide a way for users to disable notices for your application in your application’s custom
preferences. Central components include an IconButton component. When set to
"icon_alert", this component becomes a Set Notices button. You can use this button to
open a dialog box (which you can create with the MDialogBox component), where you allow
the user to set Notices preferences. For more information about implementing preferences for
your application, see “Application-specific preferences” on page 62.

• Only set the alert property of a notice to true when necessary.
• Be careful about setting up notices to automatically open their parent application. Do this only

when necessary. Do as little as possible to interrupt the user’s normal workflow.
104 Chapter 6: Creating Notices

CHAPTER 7
Using the Blast Feature
The Blast feature of Macromedia Central provides a way for applications to send user-selected
data to other applications installed in Central. Applications can “listen” for this data and respond
to it in useful ways.

For example, a user might look up a concert in an entertainment calendar application,z and then
select the event data in the application. The user can then select a map application from the Blast
menu to send the selected data to the map application to get directions. The user might also
choose a retail application from the Blast menu to find products related to the performer, such as
concert T-shirts.

Another example might be a movie finder application in which the user selects a specific movie.
The movie finder application could pass the address of the movie theater to a restaurant finder
application to find restaurants near the theater. The restaurant finder could then pass the address
of a selected restaurant to a weather application to determine the weather for that location.

The Blast feature can be implemented in an application to enable the application to send data,
receive data, or both.

The Blast method of data transfer is based on XML schemas. The use of XML schemas allows for
translation between XML and ActionScript objects, and it allows developers to use a common,
defined method of describing the data that their applications can provide or consume. To get you
started, Macromedia has defined some basic types in the first version of the CentralData.xsd
schema.

Although the Blast feature is based on XML schemas, for communication that is based strictly on
ActionScript, the schema does not have to exist. For purposes of testing, you can exchange data
among your applications by using a schema location and namespace that don’t exist. However, if
you don’t define a schema and make it available, no other developers will be able to interact with
your applications.
105

Sending data from an application

When the user selects a data item such as a movie listing, restaurant, address, or other item that
the developer of the application has defined as something that can be sent to other applications,
the application can send the data to other applications by calling the
shellRef.setSelectedItem() method.

When an application calls the setSelectedItem() method, Central displays the Blast menu
icon in the user’s status bar, indicating that the user has selected a portion of data, such as a movie,
restaurant, address, and so on, and displays a string in the status bar with information about the
selected item. The Blast menu lists each application that can receive the selected data type, along
with its icon. The final item on the Blast menu, All on Screen, enables the user to send the data to
all the applications and pods on the screen that can handle the selected data type. If no
applications installed in Central handle any of the data types currently selected, the Blast icon is
dimmed, and rolling over it displays a tooltip that says, “No other applications can receive this
selection.”

Control-clicking (Command-clicking on the Macintosh) the Blast menu toggles the Auto Blast
feature for the current application. When Auto Blast is enabled, selected items are immediately
sent to all applications and pods on the screen that can handle any of the sent data types. The
state of the Auto Blast feature is persistent, so if the user turned it on the last time an application
was used, it is enabled the next time the application is started. Focus doesn’t change during an
auto broadcast; it remains with the application that called the setSelectedItem() method.

Sending data from an application to other applications requires the following steps:

1. Create an object that describes the data to be sent.

2. Create a SelectedItem object that contains a reference to the XML schema that describes the
data types you are using.

3. Set a property of the SelectedItem object to the object that describes the data.

4. Create an array that contains the SelectedItem object(s) that were defined.

5. Call the shellRef.setSelectedItem() method.

By implementing these steps, you cause any application that can handle either the address or
link data types to appear in the Blast menu when the user clicks it in the Central application
window.

To send data from an application:

1. Create an object that describes the data to be sent. The object must have the properties defined
for the data type in the XML schema. For example, the following code defines an address object
with the properties defined for the address data type:
// create a new object with properties defined by the address
// data type schema.
var tempAddress:Object = new Object();
tempAddress.street = "555 Houston St.";
tempAddress.city = "Berkeley";
tempAddress.state = "California";
tempAddress.postalCode = "94708";
tempAddress.country = "USA";
106 Chapter 7: Using the Blast Feature

2. Create a SelectedItem object that contains a reference to the XML schema that describes the
data types you are using. When you construct the SelectedItem object, also pass the name of the
data type that you are using. The following example uses the address data type:
// create a new SelectedItem object so Central knows what the namespace is
var addressSI = new mx.central.data.SelectedItem("http://

download.macromedia.com/pub/central/schemas/CentralData#", "address");

3. Set a property of the SelectedItem object to the object that describes the data. The property that
is set must have the same name as the data type being used, as follows:
// set the property of the SelectedItem object with the same name as the XML
// data type (address) to the object previously created with the properties
// defined by the XML schema for the address data type
addressSI.address = tempAddress;

4. Create an array that contains the SelectedItem object(s) that were defined:
// setSelecteditem() expects an array
var tempArray:Array = new Array(addressSI);

5. Call the shellRef.setSelectedItem() method. The setSelectedItem() method takes two
arguments. The first is the array defined in the previous step. The second is an optional string
to be displayed in the application window status bar.
gShell.setSelectedItem(tempArray, "Address selected.");

The following ActionScript demonstrates the steps required to create a pair of SelectedItem
objects and pass them to the Central shell with setSelectedItem(). It is the complete example
from the previous steps. An additional type has been added:
// create a new object with properties defined by the address
// data type schema. See the data types definitions for the parts
// of an address object
var tempAddress:Object = new Object();
tempAddress.street = "555 Houston St.";
tempAddress.city = "Berkeley";
tempAddress.state = "California";
tempAddress.postalCode = "94708";
tempAddress.country = "USA";

// create a new SelectedItem object so Central knows what the namespace is
var addressSI = new mx.central.data.SelectedItem("http://

download.macromedia.com/pub/central/schemas/CentralData#", "address");

// set the property of the SelectedItem object with the same name as the XML
// data type (address) to the object you previously created with the properties
// defined by the XML schema for the address data type
addressSI.address = tempAddress;

// repeat the above steps for the <link> data type
var tempLink:Object = new Object();
tempLink.label = "example web page";
tempLink.href = "http://www.macromedia.com";
var linkSI = new mx.central.data.SelectedItem("http://download.macromedia.com/

pub/central/schemas/CentralData#", "link");
linkSI.link = tempLink;
Sending data from an application 107

// setSelecteditem() expects an array
var tempArray:Array = new Array(addressSI, linkSI);

gShell.setSelectedItem(tempArray, "address and web page selected");

Receiving data

The application that the user selects from the Blast menu starts (if it’s not already running), and
receives an onActivate() message normally. After the onActivate() function is completed, the
application receives an onSelectedItem() call from the shell. The onSelectedItem() function
should contain code that deals with the incoming data in whatever way is appropriate to the
application. An application that is “listening” for address data might contain an
onSelectedItem() function similar to the following one:
function onSelectedItem(data)
{

for (var i:Number = 0; i < data.length; i++)
{

// check to be sure the object is an address data type
if (data[i].address != null)
{

// populate an array with the new address object
addressObjectArray.push(data[i].address);

}
}

}

Note: Even if your application receives only one data type, you should check to be sure that every
element of the array is of the right type.

Sending data from pods

Although pods cannot call setSelectedItem() or trigger the Blast menu directly, they can send
data to their own application. A pod can use the function Console.loadApplication() to open
its parent application. You can pass an optional data parameter with loadApplication() that
triggers the onSelectedItem() function in the pod’s parent application.

The following ActionScript code demonstrates the steps required to create an appropriate
SelectedItem object and pass it to the parent application with loadApplication(). The steps for
creating the SelectedItem object are the same as for an application.
var tempAddress:Object = new Object(); // This will contain an address object.

See the data types definitions for the parts of an address object
tempAddress.street = "1 Park Avenue";
tempAddress.city = "Oakland";
tempAddress.state = "California";
tempAddress.postalCode = "94708";
tempAddress.country = "USA";

//create a new SelectedItem object so Central knows what the namespace is
var addressSI = new SelectedItem("http://download.macromedia.com/pub/central/

schemas/CentralData#", "address");
108 Chapter 7: Using the Blast Feature

// set the property of the SelectedItem object with the same name as the XML
// data type (address) to the object you previously created with the properties
// defined by the XML schema for the im data type
addressSI.address = tempAddress;

var dataArray:Array = new Array(addressSI);
gConsole.loadApplication(dataArray);

Sending data from a pod to its parent application with loadApplication() is somewhat less
restricted than sending data from one application to another. There is no type checking involved,
and you can send data in any format, not just using SelectedItem or XML objects. Additionally,
you don’t have to declare a supportedType tag in your product.xml file to receive data from
your pod.

Pods can receive sent data, but only if the user selects All on Screen from the Blast menu. Like
applications, pods receive an onSelectedItem() call and must declare the types they support in
the product.xml file. For more information, see “Accessing information across domains”
on page 77.

Registering supported data types in the product.xml file

Each application and pod can include in its product.xml file a list of the data types it can receive.
You can register data types for your application with Central by including a supportedTypes tag
within the product.xml application, pod, or podClass tags. When an item is selected in one
application, the Blast menu displays only the installed applications that can handle one or more of
the types of data selected.

The following product.xml example shows a supportedTypes tag that describes the namespace,
schema, and two supported data types (address and link):
<supportedTypes namespace="http://www.myCo.com/CentralData#" schema="http://

www.myCo.com/CentralData.xsd">

<type>address</type>
<type>link</type>

</supportedTypes>

When the selected item is broadcast, only active pods and applications that have at least one
supported type defined in the selectedTypes tag receive the data. Applications that want to
receive all data types in a given schema can register to do so by using the XML schema of the type
any. For example:
<supportedTypes namespace="http://www.w3.org/2001/XMLSchema">

<type>any</type>

</supportedTypes>

The namespace attribute is required for the supportedTypes tag, but the schema attribute is
optional. The effects of having or not having a schema are described in the following sections.
Types from multiple schemas can be declared by repeating the supportedTypes tag.
Registering supported data types in the product.xml file 109

Defining your own data type schema

While it is preferable to use existing data type schemas when possible in order to increase
compatibility among applications and limit the number of differing schemas in existence,
occasionally it may be necessary to define a new schema for a particular data type.

To define a data type of your own, define the property structure of the data type you want to
define. For example, a recipe data type might have properties that describe the recipe name,
cuisine type, ingredients, and instructions, as in the following XML code:
<recipe>

<name> string </name>
<cuisineType> string </cuisineType>
<ingredients>

<ingredient type=string amount=string />
</ingredients>
<instructions> string </instructions>

</recipe>

For additional examples of data type property structures, see “Data type reference” on page 114.

After you have defined the property structure for the data type, you can make a schema definition
file that can be published for other developers to refer to. This is also the file that is passed when
new SelectedItem() is called in ActionScript.

You can define any kind of data type you want, but applications created by other developers
cannot send or receive the new data type until you publish the type definition file.

Choosing a schema format

The Blast feature operates by passing ActionScript objects between applications. To increase
interoperability between applications, the built-in Macromedia data objects are expressed as XML
schemas. The following are the three main approaches to using data types in Central:

• Use the existing objects and schemas supplied by Macromedia or other Central developers. For
a list of those provided by Macromedia, see “Data type reference” on page 114.

• Get the XML schema that suits your purposes from a schema repository, and create
ActionScript objects that map to it.

• Create the object definitions and the XML schema yourself.

The first two approaches are preferred because of ease of development and the ability to avoid
redundant and incompatible type definitions. If you decide on the third option, helpful
information, validators, and tools on writing schemas are on the World Wide Web Consortium
XML schema website at www.w3.org/XML/Schema.

Objects with automatic serialization and deserialization

The mapping from XML to ActionScript objects is straightforward. The simplest case would be
to implement a function such as the following in an application or pod:
MyDataInst = function(...)
{
}

110 Chapter 7: Using the Blast Feature

http://www.w3.org/XML/Schema

This creates an ActionScript object called MyDataInst. Create an instance to use it in Central,
and then attach the data type, by calling the new SelectedItem() method, as follows:
var sd = new SelectedItem("http://www.myCompany.com/MyData#", "MyDataType")
sd.MyDataType = myDataInst;

If you want your application to receive data of this type, list the URL http://
www.myCompany.com/MyData.xsd#MyDataType in its product.xml file. The MyDataType
property of the SelectedItem object is the name of the root element. The notion of an
ActionScript object field name mapping to an XML element name is the basis of the automatic
serialization or deserialization. The SelectedItem object can be seen as analogous to the
ActionScript XML object, which acts as a holder for the actual document.

Note: If the schema can’t be resolved, Central maps the data to the most basic ActionScript-to-XML
mapping. However, Macromedia recommends that a schema be provided. This creates some
documentation of the data types and allows for better communication with other developers of
Central applications.

Using no schema

When not using a schema, all XML terminals (elements with no children) are deserialized as
strings. This means that when serializing an ActionScript object into XML, the generated XML
tags do not have any attributes. Using a schema, you can use richer types, like numbers, Boolean
values, dates, and so on, and also use XML attributes.

The following is an example of this simple translation.

Start by creating an object called Foo with two properties:
var fooInst = new Foo("red", "green");

Foo = function(color1, color2)
{

if(color1) this.color1 = color1;
if(color2) this.color2 = color2;

}

Central translates this object into XML code that looks like the following:
<foo>
 <color1>Red</color1>
 <color2>Green</color2>
</foo>

However, if a schema had been present and specified that color1 and color2 were attributes of
the foo element, the serialized XML code would look like the following:
<foo color1="Red" color2="Green">
</foo>
Choosing a schema format 111

ActionScript-to-XML type conversion

The following table shows the complete mapping of ActionScript types to XML:

The following table shows the mapping of basic schema types to ActionScript:

Note: The XML schema serves as a guide for serialization and deserialization, and no validation
is done.

Using XML objects to send data

You can also use ActionScript built-in XML objects to pass data. Again, using the schema is
optional, but you have to flag your XML objects with the data type. Taking the preceding
example, you might construct the raw XML in the following way:
var data:XML = new XML();
var root:XMLNode = x.createElement("foo");
x.appendChild(root);
var bar:XMLNode = x.createElement("bar");
var baz:XMLNode = x.createElement("bar");
root.appendChild(bar);

ActionScript type XML Description

Object Element The name is taken from the name used to
address the object in the containing object.

String Text Node | Attribute Value The string becomes a text node in the
containing element.

Number Text Node | Attribute Value The number is converted to a string and
becomes a text node in the containing
element.

Date Text Node | Attribute Value The date is converted to a string and becomes
a text node in the containing element.

Boolean Text Node | Attribute Value The Boolean value is converted to a string
(true or false) and becomes a text node in
the containing element.

Array Element(s) Each element of the array is serialized,
according to the above rules, within an
element taken from the name used to address
the array in the containing object.

Schema type ActionScript type

xsd:string | xsd:token String

xsd:decimal | xsd:integer | xsd:negativeInteger |
xsd:nonNegativeInteger | xsd:positiveInteger | xsd:nonPositiveInteger
| xsd:long | xsd:int | xsd:short | xsd:byte | |xsd:unsignedLong |
xsd:unsignedInt | xsd:unsignedShort | xsd:unsignedByte | xsd:float |
xsd:double

Number

xsd:date | xsd:dateTime | xsd:time Date

xsd:boolean Boolean
112 Chapter 7: Using the Blast Feature

root.appendChild(baz);
bar.appendChild(x.createTextNode("Red"));
baz.appendChild(x.createTextNode("Green"));

Central would still need to know the data type, so you must attach it to the XML; the namespace
is given by the xmlns attribute on the root node and the type is given (relative to the namespace)
by the xsi:type attribute. The following method, provided by Central, does this:
data.setType("http://www.myapp.com/Foo#", "Foo");

If an application calls the setSelectedItem() function with an XML object that has no data
type, Central does not know what to do with it and no applications can receive the data.

Defining your own data type schema

While it is preferable to use existing data type schemas when possible to increase compatibility
among applications and limit the number of differing schemas in existence, occasionally it might
be necessary to define a new schema for a particular data type.

To define a data type of your own, define the property structure of the data type you want to
define. For example, a recipe data type might have properties that describe the recipe name,
cuisine type, ingredients, and instructions, as in the following XML code:
<recipe>

<name> string </name>
<cuisineType> string </cuisineType>
<ingredients>

<ingredient type=string amount=string />
</ingredients>
<instructions> string </instructions>

</recipe>

For additional examples of data type property structures, see “Data type reference” on page 114.

After you have defined the property structure for the data type, you can make a schema definition
file that can be published for other developers to refer to. This is also the file that is referenced
when a new SelectedItem object is created in ActionScript.

You can define any kind of data type you want, but applications created by other developers
cannot send or receive the new data type until you publish the type definition file.

Selected item storage

Selected items are not stored by Central. Local shared objects are a good way to store this data if
an application requires it. The application is also responsible for clearing the selection by passing
a null value to the setSelectedItem() method if the data becomes irrelevant. Central clears the
shell’s selected item whenever the shell loads an application.
Selected item storage 113

Data type reference

Developers are free to use whatever vocabulary they like for their data. Central includes some
basic data types for use in Central to help facilitate interoperability across applications.

To use the data types included in Central, reference the schema located at http://
download.macromedia.com/pub/central/schemas/CentralData# when calling new
SelectedItem().

The following example refers to the Macromedia schema definition file, and creates an object
based on the “link” data type:
linkItem:Object = new Object();
linkItem.label = "Home Page";
linkItem.url = "http://macromedia.com";
newItem = new mx.central.data.SelectedItem("http://download.macromedia.com/

pub/central/schemas/CentralData#", "link");
newItem.link = linkItem;

The following sections describe the Central data types:

<email>

Usage

<email type = "string" address = "string" />

Description

An e-mail address, with an optional type attribute. Common types include "home" and "work".

Example

<email type = "work" address = "name@domainName.com" />

<phone>

Usage

<phone type = "string" number="string" />

Description

A phone number. The type attribute is optional and can contain values like "home", "work",
"mobile", or "fax".

Examples

<phone type = "home" number = "415 555 5445" />
<phone type = "work" number = "+1 415 555 1212" />
<phone type = "mobile" number = "252-1234" />
<phone type = "summer cottage" number = "(217) 555 1212" />
114 Chapter 7: Using the Blast Feature

<im>

Usage

<im service = "string" id = "string" kind="string" label="string"/>

Description

An instant messaging address (id), with a required service attribute and optional kind and
label attributes. The service attribute can be one of the following common choices, or another
if not listed here:

• AOL
• YIM
• MSN
• ICQ

Examples

<im service = "YIM" ID = "someUserName" />
<im service = "ICQ" ID = "123456789" kind="work" />

<link>

Usage

<link href="string" label = "string" />

Description

A link to a resource on the Internet. The link is contained in the href attribute, and there can be
an optional label attribute that describes the link.

Examples

<link label = "test site" href = "http://www.dookie.com" />
<link label = "Macromedia" href = "http://www.macromedia.com" />
<link href="http://klynch.com" />

<address>

Usage

<address label="string" href="string">
<street>string</street>
<city>string</city>
<state>string</state>
<province>string</province>
<region>string</region>
<postalCode>string</postalCode>
<country>string</country>
<other>string</other>
<full>string</full>

</address>
Data type reference 115

Description

An address with an optional descriptive label attribute, and an optional href attribute for
providing a link to a directions page. All the child tags of the address tag are optional. The
street and other tags can occur more than once within a single address tag. The full tag is
intended to be used as a string representation of the entire address.

Examples:

<address label="home">
<street>2331 ward</street>
<city>berkeley</city>
<state>ca</state>
<postalCode>94705-1103</postalCode>
<country>USA</country>
<other>c/o the moomen project</other>

</address>

<address label="Macromedia">
<street>600 Townsend St.</street>
<city>San Francisco</city>
<state>CA</state>
<postalCode>94103</postalCode>

</address>

<address label="Macromedia" href="http://macromedia.com/macromedia/
mmdirections.html">
<full>600 Townsend St., San Francisco CA 94103</full>

</address>

<contact>

Usage

<contact name="string">
<email />
<phone />
<im />
<link />
<address>...</address>
<coordinates />

</contact>

Description

Contact information for a person. All the items are optional. There can be zero or one name
attribute, and zero or more of all the other attributes.

Example

<contact name="Jane Doe">
<email address="jdoe@someCompany.com" />
<phone type="work" number="123-555-2000" />
<phone type="home" number="123-555-1212" />
<im type="work" service="AOL" address="someUser" />
<link href="http://aCompanyName.com" />
<address label="home">
116 Chapter 7: Using the Blast Feature

<street>2331 ward</street>
<city>berkeley</city>
<state>ca</state>
<postalCode>94705-1103</postalCode>
<country>USA</country>
<other>c/o the moomen project</other>

</address>
</contact>

<coordinates>

Usage

<coordinates label="string" latitude = "string" longitude="string" />

Description

A location on earth, expressed in decimal latitude and longitude, along with an optional
descriptive label and optional elevation. To convert degrees/minutes/seconds to decimal, use the
conversion tool available from the FCC at www.fcc.gov/.

Example

<coordinates label="Meigs Field, Chicago" latitude = "41.866667" longitude =
"87.6" />

<business>

Usage

<business domain="string">
<name>string</name>
<description>string</description>
<type>string</type>
<email />
<phone />
<im />
<link />
<location country="country-code" postalCode="string" main="yes/no">

<about />
<address>...</address>
<coordinates />
<serviceRange />
<hours day="string" open="string" close="string" timezone="string" />
<parking type="string"> string </parking>
<publicTransportation type="string" blocksAway="string"> string </

publicTransportation>
<languageSpoken language="country-code"> string </languageSpoken>

</location>
</business>

Description

Business description, based on the specification of the SMBmeta (small and medium-size business
metadata) format. SMBmeta does not currently contain e-mail, phone, and IM items.
Data type reference 117

http://www.fcc.gov/

The type of business is specified using the North American Industry Classification System
(NAICS). For information about the system, see the Census website at www.census.gov/epcd/
www/naics.html. The specific system used is the NAICS 2002, which has codes defined on the
2002 NAICS Codes and Titles page at www.census.gov/epcd/naics02/naicod02.htm. You can
find the detailed definition of each code by clicking the code numbers on that page, but you may
need to check them before choosing a code for your business. For example, codes beginning with
72 are Accommodation and Food Services, 722 are Food Services and Drinking Places, and
722110 are Full Service Restaurants.

The NAICS value is hierarchical, so searches can be done easily on more or less specific depths.
When choosing a code for your business, be as specific as possible. If your business falls into more
than one category, include all the categories by using multiple <type> elements.

You can include specific attributes for a business type by using namespaces, such as Restaurant or
Theater, as the following examples show.

Examples

<business>
<name>Lupa</name>
<type naics="722110">Restaurant</type>
<description>The Noe Valley trattoria formerly known as Noi has morphed into
Lupa, named after the wolf who reared Rome's founders Romulus and Remus;
owner Stefano Coppola has relaunched it with a Southern Italian bent,
featuring pastas as well as heartier dishes such as roasted boar on the menu;
the skinny, bi-level interior, painted lipstick-red and buttery Tuscany
yellow, has remained intact, but a gas fireplace has been added to the front
room.</description>
<phone number="415-642-4664" />
<location country="us" postalCode="94114">

<address>
<street">4109 24th St.</street>
<other>(bet. Castro & Diamond Sts.)</other>
<city>San Francisco</city>
<state>CA</state>

</address>
<serviceRange area="neighborhood">Noe Valley</serviceRange>
<hours open=”6:00 PM” close=”11:00 PM”>Open everyday except holidays</

hours>
<restaurant:cuisine type="Italian (Southern)">

</location>
</business>
<business>

<name>AMC Kabuki 8</name>
<type naics="512131">Theater</type>
<phone number="(415) 922-4AMC" />
<location country="us" postalCode="94115">

<address>
<street>1881 Post Street</street>
<city>San Francisco</city>
<state>CA</state>

</address>
<theater:feature type="Online Ticketing" />
<theater:feature type="Handicap Access" />
118 Chapter 7: Using the Blast Feature

http://www.census.gov/epcd/naics02/naicod02.htm
http://www.census.gov/epcd/www/naics.html
http://www.census.gov/epcd/www/naics.html

<theater:feature type="Enhanced Sound" />
</location>

</business>

<publication>

Usage

<publication>
<title> string </title>
<creator> string </creator>
<subject > string </subject >
<description> string </description>
<publisher> string </publisher>
<contributor> string </contributor>
<date> datetime-string </date>
<type> string </type>
<format> string </format>
<identifier> string </identifier>
<source> string </source>
<language> lang-code </language>
<relation> string </relation>
<coverage> string </coverage>
<rights> string </rights>

</publication>

Description

Information about a publication, using the commonly accepted Dublin Core metadata standard.
There is a usage guide for this data at http://dublincore.org/documents/usageguide/.

Example

<publication>
<creator>Rose Bush</creator>
<title>A Guide to Growing Roses</title>
<description>Describes process for planting and nurturing different kinds of
rose bushes.</description>
<date>2001-01-20</date>
<identifier>ISBN 4535464</identifier>
<identifier>http://www.amazon.com/exec/obidos/tg/detail/-/1840380713/</
identifier>

</publication>
Data type reference 119

http://dublincore.org/documents/usageguide/

120 Chapter 7: Using the Blast Feature

CHAPTER 8
Designing for Central Best Practices
By observing a few guidelines, you can provide an easily understandable user interface, ensure that
the Macromedia Central application development process proceeds smoothly, and minimize the
size of your application’s SWF files. The following sections describe these guidelines.

Configuring Macromedia Flash

By configuring some settings in the Macromedia Flash authoring environment, you can make the
authoring and playback of Central applications proceed smoothly. Use the following
configurations for best results:

• Set the frame rate for each Flash file to 21 frames per second. Central runs all applications and
pods at this speed, regardless of the actual speed set in the SWF file.

• When publishing Flash files for final deployment (after testing and debugging), use the
following settings in the Flash tab of the Publish Settings dialog box:
■ Select Flash Player 7 from the Version menu. Applications run faster when compiled for

Flash Player 7. Existing Macromedia Flash Player 6 applications will continue to run as they
did in Central 1. If your application must target Flash Player 6, select the “Optimize for
FP6, Release 65” checkbox.

■ Select Omit Trace Actions. This prevents trace() methods from being executed without
requiring them to be manually removed from the file’s code.

■ Deselect Debugging Permitted. Central does not support SWD files. This may cause
problems during development as well. Use the debugging application supplied with the
Central SDK instead.

■ Select Compress Movie. This reduces the size of your SWF files.
• Install one of the Flash authoring templates provided with this SDK. Templates for Flash

MX 2004 are located in the Utilities folder. The appropriate template can be installed in Flash
using the Macromedia Extension Manager, available at www.macromedia.com/go/
em_download.
121

http://www.macromedia.com/go/em_download
http://www.macromedia.com/go/em_download

Application user interface

By applying some simple guidelines to an application’s user interface design, you can make the
user experience smooth and intuitive. Using the interface components that are built into Central,
you can decrease the size of your application’s SWF files and greatly simplify the process of
building your application. Using these components can also provide a measure of consistency in
the user experience across applications from various developers.

Keep in mind the following points when considering the design of your application:

• For detailed information about each component that is built into Central and its APIs, see
Building Central Applications with Components.

• An MXP file containing the components for authoring is included with this developer’s guide.
Use the Macromedia Extension Manager to install the MXP into Flash MX 2004.

• Providing a custom help screen for your application can make it easier for users to discover
what your application can do and how to access all its features.
To provide help for your application, create an HTML help file and indicate its URL in the
product.xml help tag. This enables the Help > ApplicationName menu item in Central. When
the user selects this menu item, Central opens the help page in a web browser. The Help >
ApplicationName menu item uses the getURL() method to access the help file. Help files
cannot be cached, because the getURL() method does not access files in the cache. This means
that your help will not be available while in offline mode.

Central coding conventions

Because applications in Macromedia Central are SWF files loaded into the application shell,
which itself is a SWF file, it is important not to write ActionScript that assumes the SWF file is
the only SWF file and is at the root level. Follow these rules to create applications that operate
smoothly in the Central environment:

• Don’t reference the _level0 identifier.
References to the _level0 identifier do not work properly in Macromedia Central, because
your application is not the root movie. Also, avoid the slash notation (/) sometimes used as an
alternative to _root for specifying an absolute path to a level. Use relative references such as
_parent instead.

• Be careful when using the _root and _lockroot identifiers.
Central sets _lockroot to true when a SWF file is loaded. This ensures that when a Central
application uses _root, it correctly refers to the _root of the SWF file. Central applications
should not modify the value of _lockroot.

• Don’t use the Stage.height or Stage.width property.
The Stage will not be entirely available to your application, because there are surrounding
elements in the application window, such as the Launcher bar and status bar. To determine
your application’s display area, use the Shell.getBounds() function.
122 Chapter 8: Designing for Central Best Practices

• Pass global coordinates to hitTest().
Flash developers often pass _root._xmouse and _root._ymouse to hitTest(). In Central,
the _root for your movie does not necessarily correspond to the global coordinate space. You
have to convert the coordinates explicitly:
var pt = { x: this._xmouse, y: this._ymouse };
this.localToGlobal(pt);
this.hitTest(pt.x, pt.y);

Note: Even if you are using _root, be sure to call _root.localToGlobal().

• Don’t assume that a network connection exists.
Macromedia Central enables your application to run locally even when the user is not online.
It’s best to design your application so that it functions as much as possible when offline and
without assuming that the user will always have a network connection.To determine whether
the user is online, call Shell.isOnline(). To receive notification of network changes, create
an onNetworkChange event handler.

• Don’t assume that the application is running alone.
Macromedia Central allows users to run multiple applications, each in their own window. Your
application can appear in more than one of these windows, all running at the same time. An
application should not assume it has only one instance of itself running. For example, when
using local connections, be sure to broadcast a unique name for each instance of your
application.

• Don’t leave setInterval() functions running when your application is closed.
Macromedia Central continues running even when your application is deactivated, so threads
created with setInterval() continue to be called. These tasks should be ended with the
clearInterval() method when your application receives an onDeactivate event.

• Be careful when using _global variables. If you choose to use _global variables, be sure to
delete them in your onDeactivate handler. These variables stay in memory after your
application has quit, and may interfere with other applications from the same Internet domain.
Applications from different Internet domains do not conflict with each other, because Flash
maintains a different _global space for each domain.
If you choose to use _global variables, using namespaces is a good way to help ensure that
your variables don’t interfere with the variables of other applications. To use namespaces, create
objects with names you know to be unique, such as the name of your company combined with
the name of the application. Then create variables as properties of those objects.
The following code shows the creation of a global variable in a unique namespace in the
onActivate() function:
function onActivate(shellRef, appID, shellID, baseTabIndex, initialData)
{

_global.wwwMyCompanyCom.applicationName = new Object();
_global.wwwMyCompanyCom.applicationName.foo = "bar";

}

Central coding conventions 123

• For pods and agents, do not use global variables to store instance-specific data.
All the pods from a given domain share the same _global object, as do all the agents from a
given domain. This makes it easy to share information, but also makes it dangerously easy for
different pod or agent instances to overwrite each other’s data.
A common mistake in a pod is to store the Console callback object in a global variable, as the
following code shows:
function onActivate(console, podID, viewerID, position, baseTabIndex,

initialData)
{

gConsole = console;

}

This is a bad practice. All instances of your pod share the same gConsole variable, so it refers
to the console callback object for the pod that was created last. Thus, it works correctly only for
that pod. In some cases, the callback object does not work at all.
Instead, use ActionScript 2.0 to create a class with all of your Central event methods. Variables
referenced by this class are required to be members of the class. This ensures that your class is
self-contained and does not pollute the global variable scope.
The following example creates a class to relate the variable to the movie clip:
class MyClass implements mx.central.Pod {

// define gConsole as a class member
var gConsole:mx.central.Console;

function onActivate(console:mx.central.Console, podID:Number,
viewerID:Number, position:Number, baseTabIndex:Number,
initialData:Object):Void
{

gConsole = console;

[...]
}

// other mx.central.Pod methods here
// ...

}

• Use the onDeactivate() function to clean up global variables, setInterval() functions, and
network connections. This also includes any local connections, connections to LCService, and
any LCDataProvider connections.
The following code deletes a global variable in the onDeactivate() function:
function onDeactivate()
{

delete _global.wwwMyCompanyCom.foo;
}

124 Chapter 8: Designing for Central Best Practices

• Use the onUninstall() function to delete shared objects that the application uses.
For example, the following function deletes the shared object referred to by the variable my_so:
function onUninstall()
{

my_so.clear()
}

• Use fully qualified names to avoid using the same name as another application. For example,
com.mydomain.central.myappName.

• Applications and Pods that hide the mouse pointer should detect when the user moves the
mouse outside of the application, or pod, area and re-show the mouse pointer appropriately.

Optimizing SWF files

The following tips can help reduce the size of your application’s SWF files:

• Enable the Generate Size Report in Flash option by selecting File > Publish Settings > Flash >
Options, and note the information in the report each time you publish the file.

• Remove unused items from the file’s library.
• Use the components that are built into Central so you don’t have to include components in the

SWF files themselves.
• Don’t include font definitions in SWF files. Make sure there aren’t fonts embedded in text. To

verify this, select a portion of text and click the Character button in the Property inspector.
Make sure that the No Characters option is selected.

• Turn off compression when determining how changes are affecting the size of the SWF file.
The uncompressed savings is stored in RAM when Central is running the application.

• Scan your files for any unused code left over from the development process, and remove it.

Testing an application

When testing your application in Central, add trace() commands to your code and install the
Central Debugger application. Central uses trace() commands to send information to the
Debugger application. By opening the Debugger in a separate application window, you can
observe the results of trace() commands, as well as additional information, while your
application runs.

If an application uses shared objects, the application should be tested with shared objects created
by older versions of the application throughout its development.

Be aware of SWD files in Central. To avoid the presence of SWD files, be sure to deselect the
Debugging Permitted option in the Flash Publish Settings dialog box for all FLA files used by
your application.
Testing an application 125

Converting existing Flash applications into Central applications

In general, modifying an existing Flash application for use in Central is a relatively easy task.

The following tasks are required for converting an existing application SWF file to run in Central:

• Add the application APIs so that the application can respond to events from Central. For more
information, see “Implementing the application methods” on page 37.

• Modify the ActionScript code to conform to the Central conventions (see “Central coding
conventions” on page 122).

• Add a product.xml file and icons.
• Deploy the application for installation into Central from the web.
126 Chapter 8: Designing for Central Best Practices

CHAPTER 9
Deploying Central Applications
After you create an application, you can make it available for download into Macromedia Central.
The Software Development Kit license grants you rights to use the SDK for development
purposes. You need a deployment license if you want to deploy your application for any purposes
other than development testing. Registration is the process of providing information about
yourself and details about your application. If you choose to list your application in the
Application Finder, you point to the product.xml file that exists with your installation files. When
publishing your application, you can provide an Install button on your site, list the application in
the Application Finder, or both.

Deploying an application

To deploy a Central application, follow these steps:

1. Obtain a product ID number from Macromedia. The subsequent tasks require the product ID.

2. Package the application pieces for installation. This includes creating a product.xml file for your
application.

3. Post your application for download on a web server.

4. Deploy an installation badge to help users initiate downloading of your application. An
installation badge is a SWF file that contains code to start the application download operation.

5. (Optional) Register your application to appear in the Central Application Finder.

Obtaining a product ID

You must have a product ID to start testing an application in Central. Applications cannot be
installed in Central without an ID.

For Central to allow your application to be installed, you must obtain a product ID from
Macromedia. You can register your application and obtain the product ID at
www.macromedia.com/go/central_productid. The product.xml file requires this ID in order to
enable the downloading of your application.
127

http://www.macromedia.com/go/central_productid

A special product ID is available for use during the testing and development of your application.
This product ID can be used by only one application at a time on your local computer, and you
must not publish applications for public use with this ID. The development and testing product
ID is CND100-062234-167221-651442.

Packaging the application

To prepare your application for publication and download, create a product.xml file for your
application. The product.xml file provides information that Central uses to locate and install all
the necessary files for your application.

After registering your product, update your application’s product.xml file with the product ID
you received during registration, and with the vendor ID you provided during registration. When
you publish your application, the Application Finder parses the updated product.xml file for
details about your application.

List all the elements of your product in the product.xml file. You can choose any name you like
and place the file wherever you want, as long as you post it to the same domain as your
application. Macromedia suggests that you name this file product.xml and place it in the same
directory as your main application SWF file.

For detailed information about all of the tags in the product.xml file, see Chapter 11, “The
product.xml File,” on page 395.

The simplest way to package an application is to place all of its related files in a single directory.
This includes SWF files for the application, pod(s), agent, and icon(s). Any other files the
application requires can be placed in this directory as well.

Posting an application for download

To make an application available for download, upload the directory containing all the
application parts to the web server location indicated in the product.xml file. This way, when
Central parses the product.xml file, it will find the application files in the location specified in the
product.xml file.

Deploying an installation badge

This SDK includes a ready-made installation badge that can be found in the Utilities folder. An
installation badge provides another way to allow users to install applications, in addition to the
Application Finder. If you are not planning to list your application in the Application Finder, or if
you want to provide users with multiple ways to install applications, use an installation badge.

The installation badge is a SWF file containing ActionScript that performs the following tasks:

• Checks the version of the player installed on the user’s computer and prompts the user to
update their player if necessary.

• Checks whether Central is installed on the user’s computer and installs it if necessary.
• Checks for the product.xml file in the same directory where the installation badge SWF file

resides. If none is present, Central is installed but the application is not installed into Central.
128 Chapter 9: Deploying Central Applications

• Parses the product.xml file and displays the application name, description, and icon within the
installation badge itself.

• Installs the application into Central when the user clicks the badge.

Using the installation badge provided by Macromedia makes it very easy to enable users to install
your application, and helps provide a consistent installation experience for the user.

You can make your own installation badge as well. To make a SWF file that will install an
application into Central, include the ActionScript found in the CentralInstall.as file included in
the Utilities folder of the Central SDK, and then call two methods.

The following ActionScript includes the CentralInstall.as file in the current Macromedia Flash
MX 2004 file and creates a new fcInstallService object, and then calls the start() method of that
object:
#include "CentralInstall.as"

myIS = new fcInstallService(respObj, url, count);
myIS.start();

This code causes your installation SWF file to look for your product.xml file in the same directory
where the installation SWF file exists and then install the application based on the information in
the product.xml file. Using the CentralInstall.as file gives your installation SWF file all the
functionality of the installation badge supplied by Macromedia.

Publishing an application with the Central Product Setup Wizard

The Central Product Setup Wizard is a developer extension that simplifies the publishing process
by organizing and retaining information about your application files. The wizard is installed as
part of the authoring extensions included in the Macromedia Central SDK. Use the wizard to
organize your application files and establish your product.xml file contents. After your files are
categorized and your product.xml file is completed, you can publish subsequent builds of your
application with a couple of mouse clicks.

To organize your application files in the Central Product Setup Wizard

1. Install the authoring extensions that are part of the Macromedia Central SDK.

2. Start the Flash MX 2004 authoring tool (version 7.2 or later).
Deploying an application 129

3. Select the Commands > Central Product Setup menu option.

The Central Product Setup Wizard appears:

4. Follow the instructions from screen to screen in the wizard to organize your application files and
to establish your product.xml file.

After your files are categorized and your product.xml is completed, you can publish subsequent
builds of your application files in the Central Development panel.

To quickly publish a build of your application in the Central Product Setup Wizard:

1. Select the Window > Other Panels > Central Development menu option.

The Central Development panel appears:

2. In the Central Development panel, click the product name in the list.

3. Click Publish.
130 Chapter 9: Deploying Central Applications

Central and the Application Finder

The Application Finder on the Macromedia website (www.macromedia.com/go/
central_appfinder) is the main index of commercial Central applications. Only applications that
users must pay for can appear in the Application Finder. The Application Finder is available to
users through the Central Products section of the site. A version of the Application Finder runs
within Central as well.

You can find all the published applications by logging in to the Macromedia website and going to
the Application Finder at www.macromedia.com/go/central_appfinder.

In addition to using the information you provide when you register your application,
Macromedia Central uses your application’s product.xml file to populate the Application Finder
with information about your product.
Deploying an application 131

http://www.macromedia.com/go/central_appfinder
http://www.macromedia.com/go/central_appfinder
http://www.macromedia.com/go/central_appfinder

132 Chapter 9: Deploying Central Applications

CHAPTER 10
API Reference
The Macromedia Central Application Programming Interface (API) consists of methods,
properties, and handlers.

Central API

The Central API can be broken down into the following groups:

The Environment Management API The Environment Management API consists of objects
that handle calls to and from the Central shell instance running your application.

Object Description

Central object Object used to register your application pieces (including pods and agents)
as well as provide access to global features such as the LCService object. As
a static object, your product always uses the Central object to initialize the
application, agent, or pod.

Shell object Object that manages applications running in the main window. Shell methods
are accessed using a reference to the Shell instance received as an argument
in the application’s onActivate event.

Console object Object that manages pods running in the Console. Console methods are
accessed using a reference to the Console instance received as an argument
in the pod’s onActivate event.
133

The Agent API The Agent object is an instance of a SWF file (.swf) you build that runs in the
background to control flow between different parts of your Central application. This SWF file
has no visual state. The AgentManager object manages the agent. The agent is your SWF
instance, so it’s comparable to an application SWF instance or pod SWF instance. The
AgentManager object is equivalent to the Shell or Console object because it manages agent SWF
instances just like the Console manages instances of pods, for example.

The Application API The following objects provide the interface for your Central application
and help you manipulate application data.

The Pod API The Pod API provides the interface for your Central pods.

Object Description

Agent object Object containing events made available to your agent instance.
Central triggers events that your agent can trap provided that you write
callbacks. These callbacks can appear freestanding (that is, with no
instance name) as long as you pass the this in the
Central.initAgent() call.

AgentManager object Object that manages agents. Agent Manager methods are accessed
using a reference to the AgentManager instance received as an
argument in an agent’s onActivate event.

Object Description

Application object Object containing events made available to your application SWF
instance. Central triggers events that your application can trap provided
you write callbacks. These callbacks can appear freestanding (that is,
with no instance name) as long as you pass this in the
Central.initApplication() call.

SelectedItem object Object instantiated and filled with data by an application intending to
send information to another application or window using the Blast
feature.

MD5 object Object containing a one-way encryption algorithm for checking
message integrity.

MovieClip object Object containing the MovieClip property that identifies a true tooltip
when a user’s pointer hovers over a particular movie clip.

RegExp object Object for creating new regular expressions with optional pattern and
flags.

String object String replace method provided as a convenience wrapper for
RegExp.replace method.

Object Description

Pod object Object containing events made available to your pod instance. Central
triggers events that your pod can trap provided you write callbacks.
These callbacks can appear freestanding (that is, with no instance
name) as long as you pass this in the Central.initPod() call.
134 Chapter 10: API Reference

The Local File Access API The Local File Access API provides access to files on the user’s
computer. It also includes capabilities to upload and download.

The Data Service API LCService and LCDataProvider are helper classes built into Central
Player that make it easy for applications, pods, and agents to communicate using a common
channel. The “LC” refers to Local Connection, which is the underlying communication
mechanism.

Central WebService objects The following table lists the Central WebService objects. These
objects are closely integrated, so when first learning about them, you might want to read the
information in the order listed in the table (rather than the alphabetical listing in this document).

Object Description

FileReference object Object representing a local file. The object can trigger a file browsing
dialog box which allows the user to choose a file.

FileReferenceList object Object representing a group of local files. The object can trigger a file or
folder browsing dialog box which allows the user to choose a group of
files.

Object Description

DataProviderClass object Interface for creating and managing data items.

LCDataProvider object An extended version of the DataProviderClass object that allows
components in separate parts of your application (application, pod, or
agent) to monitor and edit the same set of data.

LCService object Object instantiated as either the server or a client. Each instance
(application, pod, or agent) is given access to methods in the other
instances as defined in the object you pass when creating the
LCService object.

Object Description

WebService object Constructs a new WebService object for calling web service methods
and handling callbacks from the web service. Uses a WSDL file that
defines the web service.

PendingCall object Object returned from a web service method call that you implement to
handle the results and faults from that call.

Log object Optional object used to record activity related to a WebService object.

SOAPCall object Advanced object that contains information about the web service
operation, and provides control over certain behaviors.

RPCFactory object XML-RPC web service interface that creates calls based on methods
defined in the XML-RPC file.

RPC object XML-RPC web service object that receives events from the RPC
method.
Central API 135

Flash API Deltas

When your Central application is loaded into the Central environment, it is not the top-level
SWF file. For this reason, when you are programming applications for Central, a few of the top-
level Macromedia Flash APIs should not be used, or have a special-case use. The following table
lists the Macromedia Flash APIs, whether they can be used, and a description that includes
alternative programming practices.

Element Use Description

_root Yes The _root property no longer refers to the root of the entire Central
application window. In the default case, _root refers to the currently loaded
SWF file. Avoid using _root. Use relative paths with _parent instead. This is
already a recommendation of Flash API best practices. Many developers
simply place the code owner=this at the beginning of their scripts and then
use owner as if it were the _root.

_lockroot Yes Central manages the _root property with an additional MovieClip property:
_lockroot. When your movie clip is loaded, the _lockroot property of your
application’s SWF file is set to true. When an application refers to _root,
Central finds the highest-level MovieClip that has _lockroot set to
true.Central applications should not modify the value of _lockroot.

_level0 No Don't use _level0. Use relative paths with _parent instead. In the Central
environment, _level0 refers to the top-level Central environment that
encompasses all Central applications.

Stage.height No Don’t rely on Stage.height.

To ascertain the current size of your application, call the getBounds()
method on the Shell instance. This should return properties for width and
height. (If getBounds() returns null, as it will while authoring, you can use
Stage.width and Stage.height property.)

To refresh your screen when the user resizes, write a handler to trap the
onResize() event.

To establish the size of your application, provide the width and height as tag
attributes of the application tag in your product.xml file.

To resize the Central window as your application runs, call
Shell.requestSizeChange(). You would do this, for example, if you want
your application to be sized at 700 x 700 pixels. If the width and height you
pass in a requestSizeChange method are larger than the shell’s minimum
size, and the minimum size you have specified in your product.xml file, the
shell will resize to the parameters you provide in the requestSizeChange
method.

Stage.width No Don’t rely on Stage.width. See the description for Don’t rely on
Stage.height., above.
136 Chapter 10: API Reference

Agent object

ActionScript Class Name mx.central.Agent

The Agent object is equivalent to your agent SWF instance. That is, your agent SWF instance
becomes an instance of the Agent object. The event handlers listed below give your agent a way to
react to global events triggered by Central. To use any of these, simply replace Agent with this
(provided you’re in your agent SWF instance).

Method summary for the Agent object

Property summary for the Agent object

Event handler summary for the Agent object

_global Yes Variables stored in _global are shared by all applications installed from your
domain. Therefore, you can't guarantee that your application is the only one
writing to the _global scope. To avoid colliding with your other applications,
declare a global object specific to each application, such as
_global.myFirstApplication and _global.mySecondApplication, for
separate applications running in Central. Finally, make sure to clean up any
global variables in your script that trap the events Agent.onDeactivate(),
Application.onDeactivate(), or Pod.onDeactivate().

trace() Yes You can use trace() as usual while authoring. Output from your trace()
statements can appear in the Central Debug panel for Flash (available in the
Central SDK). This way, you can test your application in Central while the
output from your trace() statements appears in the Central Debug panel.

Method Description

None.

Property Description

None.

Event handler Description

Agent.onActivate() Called by the AgentManager when the agent is instantiated.

Agent.onDeactivate() Called by the AgentManager when the agent is to be unloaded.

Agent.onNetworkChange() Called by the AgentManager when the connection status changes.

Agent.onNoticeEvent() Called by the AgentManager when a notice created by its application is
engaged or closed by the user or gets removed programmatically using
a script or a time-out.

Agent.onUninstall() Called by the shell when your application is being uninstalled from
Central.

Element Use Description
Agent object 137

Agent.onActivate()

Availability

Macromedia Central.

Usage

onActivate = function (agentManager, agentID, initialData)
{

// set a variable to reference the AgentManager
gManager = agentManager;

// trigger our own onNetworkChange handler
// using the current connection status
this.onNetworkChange(gManager.isConnected());

// trigger a background task, then repeat every minute
myBackgroundFunction();
gMyInterval=setInterval(myBackgroundFunction,60000);

};

Parameters

agentManager agentManager object used this reference to call any functions in the Central
Agent API.

agentID Number; unique identifier for this agent.

initialData Any data type; application-specific data. This data is set in the product.xml file’s
application tag.

Returns

None.

Description

Agent callback event; called by the Agent Manager when the agent is instantiated. When your
agent SWF instance calls Central.initAgent(), this method is called after initialization is
complete.

You pass the initialData parameter by declaring it in the application’s product.xml file using
the initialData tag. Alternatively, a pod can send initialData when it calls
managerReference.loadApplication(). This way, the data can be dynamic.

A best practice is to keep a reference to the agent manager (gManager in this example) so that you
have an object onto which you can attach subsequent calls to the Agent Manager API:
gManager = agentManager;
if(!gManager.inLocalInternetCache("http://www.mysite.com/my_photo.jpg")){

gManager.addToLocalInternetCache("http://www.mysite.com/my_photo.jpg");
}

138 Chapter 10: API Reference

In addition, it’s good practice to trigger all the handlers that keep your application refreshed once
from the onActivate() handler. For example, the callback you write for onNetworkChange()
will be triggered by Central when the connection status changes, but it’s a good idea to call it
inside the onActivate() handler. It’s also a good idea to trigger your the onResize() event
handler to trigger any positioning code so the screen gets organized correctly from the start.

To consolidate the code samples shown for features common to the AgentManager, Shell, and
Console objects, many examples show only the first parameter (agentManager in this case) being
saved in a variable (shown as gManager). Although each of these three objects have slightly
different implementations of onActivate, they all start with a reference to the respective
managing object.

Agent.onDeactivate()

Availability

Macromedia Central.

Usage

onDeactivate=function()
{

// perform clean up
clearInterval(gMyInterval);
mySharedObject.data.closingTime=new Date();

};

Parameters

None.

Returns

Nothing.

Description

Agent, application, or pod event handler; called by the respective shell the instant before an agent,
application, or pod instance is unloaded. Central triggers the onDeactivate() method each time
the user uninstalls or updates an application, or exits Central. The onDeactivate() event should
clean up any global references, including the following:

• Global variables
• Open network connections
• Open Local Connections
• Open LCService and LCDataProvider objects
• Events triggered by setInterval (using clearInterval())

Code you place inside the onDeactivate() method is ensured to run and is also the last code to
execute code before Central shuts down.
Agent object 139

Agent.onNetworkChange()

Availability

Macromedia Central.

Usage

onNetworkChange = function (connected)
{

// save connection state in a variable
gOnline = connected;

// display a visual online indicator
onlineGraphic_mc._visible=gOnline;

// if online now, try to connect to web services proxy
if (gOnline==true)
{

myBackgroundTask("start");
}
else
{

myBackgroundTask("stop");
}

};

Parameters

connected Boolean value: true if user is connected; false if offline.

Returns

Nothing.

Description

Agent, application, or pod event handler; called by the respective shell when the connection status
(online or offline) changes. The shell does not automatically check for connectivity; it simply
follows the user setting made in the File menu (either work online or work offline) or when the
user selects the network icon (lightning bolt). To determine if the user is online when the
application first loads, use the isConnected() method. You can then manually trigger your own
onNetworkChange() handler so that your contained scripts run. That is, Central only triggers
onNetworkChange() when users manually change their connection status. To check the status
using a script, use the isConnected() method.

Central can’t automatically recognize whether a computer is connected to the Internet; it honors
the user’s setting.
140 Chapter 10: API Reference

A best practice is to first check the current status (using isConnected()) and save that status in a
variable. Do not attempt online access when the status is false. When onNetworkChange()
reports true (in other words, when going back online), reestablish any background network
access, connecting to data, and updating as needed. For example, call a setInterval function to
periodically call a web service and get up-to-date information. For more information on using the
agent to manage data, see Chapter 2, “Understanding the Macromedia Central Environment,” on
page 19.

Agent.onNoticeEvent()

Availability

Macromedia Central.

Usage

// Handle a change to an existing Notice from this app
onNoticeEvent = function (event, noticeData, initialData)
{

// trace the properties contained in this notice
trace("event.type="+event.type);
trace("optional data from issuing app "+initialData);
for (var i in noticeData){
trace("noticeData."+i+"="+noticeData[i]);
}

// respond according to the event type
switch (event.type){

case "close":
message_txt.text="notice id "+noticeData.id+" was closed";
break;

case "engage":
message_txt.text="you engaged "+noticeData.description;
break;

case "timeout":
message_txt.text="elapsed time reached "+noticeData.timeout;
break;

case "remove":
message_txt.text="removed the notice named "+noticeData.name;
break;

}
// remove this notice from the list of notices we’re maintaining
if(event.type!="engage"){

myRefeshListofNotices();
}

};
Agent object 141

Parameters

event An object containing one string element, type, that provides the reason for the notice’s
dismissal. The type element has one of the following values:

noticeData An object containing several properties with detailed information about the
notice. The following are the available properties:

initialData Any data type specifying application-specific data passed at the time you call
addNotice().

Returns

Nothing.

Value Description

close Closed by the user by selecting the close box in the notice list.

engage Closed by the user by selecting the engage button as in the notice detail.

timeout Dismissed by Central because the notice has timed out.

remove Dismissed by the application through a call to removeNotice().

Property Description

id A number that represents the notice ID. This is the same ID returned
when the notice is first created using addNotice(). That is, you don’t set
this property when you create the notice.

name A string to be displayed in the notice’s title bar. If not specified, the default
value of name is:
application name Notice

description Longer string to be displayed in the notice’s body. The default is an empty
string.

timeout A number that specifies the seconds after which the notice should be
automatically dismissed. Set timeout to 0 to create a notice that never
times out.

alert A Boolean value that indicates whether the notice should be brought to
the user’s attention, rather than recorded in the Console.

engageString A short string; displayed on the engage button. If not specified, no
engage button appears.

navigate A Boolean value that indicates whether the shell should start the
appropriate application when the user selects engage.

unread A Boolean value that indicates whether the notice has been viewed by
the user.
142 Chapter 10: API Reference

Description

Agent, application, or pod event handler; invoked in an agent, application, or pod when a notice
created by your application is dismissed. Any of the following events will trigger
onNoticeEvent(): when the user clicks the close box or clicks the engage text, if the notice times
out, or the notice is removed programmatically through the removeNotice() method.

The specific values contained in the noticeData and initialData come from the initial call to
addNotice(). The onNoticeEvent() is not triggered unless your application first creates a
notice through addNotice(). For an example of how to create a notice and add it, see
AgentManager.addNotice() on page 146.

A common use of this method is to include more detail about a notice in a related window.
Presumably your user wanted the notice. The onNoticeEvent() handler is your opportunity to
give the user further details. By passing application-specific data through initialData, the
application can show the correct item related to a notice (for example, a stock chart view related
to a notice about that stock).

Agent.onUninstall()

Availability

Macromedia Central.

Usage

onUninstall=function()
{
 //execute any final code
}

Example

//this example shows how you can identify your Central customers
//MAIN WEBSITE SWF:
mySO=SharedObject.getLocal("centralData", "/");
if(mySO.data.centralUser==true)
{

message_txt.text="Welcome to my site Central user";
}
else
}

message_txt.text="You need to check out my Central app";
}

//IN YOUR CENTRAL APP:
onActivate=function(shell)
{

gSO=SharedObect.getLocal("centralData", "/");
gSO.data.centralUser=true;

};
onUninstall=function()
{

Agent object 143

gSO.data.centralUser=false;
};

Parameters

None.

Returns

Nothing.

Description

Agent and Application event handler; called when the application is being uninstalled from
Central. This call gives the application one last chance to clean up (for example, by clearing local
shared objects) before being uninstalled. Remember that local shared objects written from Central
are stored in the same place as they are when written from your main site. The example shows an
application of this fact. When Central itself is uninstalled, this method is not necessarily called for
all applications.

AgentManager object

ActionScript Class Name mx.central.AgentManager

Agents communicate with the Central environment through the AgentManager object. The
AgentManager is to your agent what the shell is to your application and what the Console is to
your pods. That is, there’s one AgentManager for all the agents (even though your application can
have just one agent). Your agent receives a reference to the AgentManager object as the first
parameter in the onActivate() method. That reference is used whenever you want to access any
methods in the AgentManager object. If you want your agent to communicate directly with your
application or pods, you should use your own implementation of the LocalConnection object or
the Central LCService class developed specifically for this purpose.

The following methods are implemented by the AgentManager object, and are called by your
agent using a reference to the AgentManager. (That is, you’ll always replace AgentManager with a
variable containing the reference to the AgentManager received in your onActivate() handler.)

Method summary for the AgentManager object

Method Description

AgentManager.addNotice() Called by an agent to create a new notice.

AgentManager.addPod() Called by an agent to make a pod available in the
console. (The pod doesn’t become visible until
the user opens it or you call viewPod().)

AgentManager.addToLocalInternetCache() Called by an agent to add a URL to the local
Internet cache.

AgentManager.inLocalInternetCache() Returns an array full of ActionScript objects, each
containing details about the notices created by
your application that are still present.
144 Chapter 10: API Reference

Property summary for the AgentManager object

AgentManager.getPods() Returns an array full of ActionScript objects—one
for each pod available to your application (as
listed in the product.xml file or created using
addPod()) and each containing details about that
pod.

AgentManager.getPreferences() Called by an agent to get the user preferences
that have been exposed to this application.

AgentManager.getViewedApplications() Returns an array full of ActionScript objects, each
containing details about each Shell instance (that
is, separate window) currently running your
application.

AgentManager.getViewedPods() Returns an array full of ActionScript objects, each
containing details about the pod instances
currently arranged in the Console.

AgentManager.inLocalInternetCache() Called by an agent when it wants to check if a
URL is in the local Internet cache. (Returns true
or false.)

AgentManager.isConnected() Called by an agent to determine current network
status. (Returns true or false.)

AgentManager.isConsoleOpen() Called by an agent to determine if the Console is
currently open. (Returns true or false.)

AgentManager.removeFromLocalInternetCache() Called by an agent to remove a specific URL
(such as an image file) from the local Internet
cache.

AgentManager.removeNotice() Called by an agent when it wants to remove a
notice using the notice ID returned at the time the
notice was added.

AgentManager.removePod() Called by an agent when it wants to remove a pod
using the pod ID returned when the pod was
added. (Unlike how a user can close a pod, this
makes the pod no longer accessible.)

AgentManager.stopAgent() Called by an agent if it wants to stop itself.

AgentManager.viewPod() Calling this function will make the specified pod
viewable in the top Viewer (that is, the uppermost
tile) of the Console.

Property Description

None.

Method Description
AgentManager object 145

Event handler summary for the AgentManager object

AgentManager.addNotice()

Availability

Macromedia Central.

Usage

noticeID=shellReference.addNotice(noticeData [,initialData])

Example

// This example function adds a notice based on parameters received
// You could use it as follows:
// var thisID=postStockNotice("MACR", 20, "a description", true);
// myListOfNotices.push(thisID);

postStockNotice=function(ticker, price, ruleDescription, alert)
{

// Creates a new notice object
var noticeData = new Object();
noticeData.name = ticker + " " + price;
noticeData.description = ruleDescription;
noticeData.alert = alert;
noticeData.engageString = "show";
// add noticeData using a reference to gShell (received in onActivate)
var noticeID = gShell.addNotice(noticeData, {ticker: ticker});

// return the ID of this notice for future reference
return noticeID;

}

Parameters

noticeData An object containing several properties with detailed information about the
notice. The following are the available properties:

Event handler Description

None.

Property Description

id A number that represents the notice ID. This is the same ID returned
when the notice is first created using addNotice(). That is, you don’t set
this property when you create the notice.

name A string to be displayed in the notice’s title bar. If not specified, the default
value of name is:
application name Notice

description Longer string to be displayed in the notice’s body. The default is an empty
string.
146 Chapter 10: API Reference

initialData Arbitrary application-specific data of any type. This data is received as the third
parameter in an onNoticeEvent callback.

Returns

NoticeID used to refer to this notice in later calls.

Description

AgentManager, Console, or Shell method; triggered by an agent, pod, or application, respectively,
to create a new notice. You need a reference to the appropriate shell (returned as the first
parameter in the onActivate event) to which you trigger this method. The examples use gShell
with the assumption that that variable was set by onActivate. For more information on getting a
reference to the shell, see Agent.onActivate, Application.onActivate, or Pod.onActivate.

It’s good practice to store some identifying information in the optional initialData parameter
when adding a notice. When the user engages the notice, the identifying information is received
in the onNoticeEvent event.

Also, it’s often better to update a notice instead of adding a new one. You update a notice deleting
the old one and replacing it with a new one. This requires you to keep track of the notices as you
create them.

AgentManager.addPod()

Availability

Macromedia Central.

Usage

podID=shellReference.addPod(podData)

Example

// Create a pod when your application loads

timeout A number that specifies the seconds after which the notice should be
automatically dismissed. Set timeout to 0 to create a notice that never
times out.

alert A Boolean value that indicates whether the notice should be brought to
the user’s attention, rather than recorded in the Console.

engageString A short string; displayed on the engage button. If not specified, no
engage button appears.

navigate A Boolean value that indicates whether the shell should start the
appropriate application when the user selects engage.

unread A Boolean value that indicates whether the notice has been viewed by
the user.

Property Description
AgentManager object 147

onActivate = function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
var gShell = shell;

// trigger a homemade function that creates a named pod
var days=["sun","mon","tue","wed","thu","fri","sat"];
var dayName=days[new Date().getDay()];
createPod(dayName+"_pod");

}

// creates and opens a uniquely named pod based on a specific class
createPod = function (theName)
{

// Create a new pod and populate it
var podData = new Object();

// Set the name that displays on the pod itself
podData.name = theName;

// This value must be the same as the <podClass name="name"> tag
podData.className = "calendarClass";

// Set an initial value to keep with the pod
podData.initialData = new Date();

// Add the pod and save a reference to it
var thisPodID = gShell.addPod(podData);

// Use the agentManager reference to view this pod in the console
gShell.viewPod(thisPodID);

};

Parameters

podData Pod data object containing several properties. This is the single parameter used any
time you create, destroy, or simply reference a pod. A podData object includes the following
properties:

Property Description

id A numeric unique ID returned when you call addPod(), so that you can
later reference the pod. Do not set this property when adding the pod.

name A string that specifies the name displayed on the pod itself. The name in
the pop-up menu at the top of the Console always matches your
application name. One application can have multiple pods, each with its
own name.
148 Chapter 10: API Reference

Returns

podID; Number set by Central and representing the unique identifier of the pod instance.

Description

AgentManager, Shell, or Console method; called by an agent, application, or pod, respectively, to
add a pod to the Console. The addPod() method only makes a new pod instance available, and
viewPod() actually makes the pod appear (as though the user physically selected it from the
Console’s pod pop-up menu). You need to use the podID returned from the addPod() method to
trigger the viewPod() method.

className A string that specifies the name of the class, as defined in the product.xml
file, that refers to a particular implementation of the pod. If your
application uses only one pod, you won’t need a pod className.
However, if you plan to have multiple pod instances based on the same
template, you should define both a podClass and your pod. You need to
define the podClass element separately. For example, suppose that you
describe the podClass tag as follows:
<podClass name="className" src="pod.swf"/>
You can then create instances of this podClass in one of two ways. First,
using the product.xml file, you can add the following pod tag:
<pod name="display name" className="className"/>

The second way to create an instance of this podClass is when creating a
new pod using addPod, as follows:
podData.name="display name";
podData.className="className";

Note: When using ActionScript 2.0, avoid .class; it is a reserved word.
Use className.

height An optional numeric parameter that you may declare to set the height, in
pixels, of the pod instance. The default height is 100. Pod widths are fixed
at 170 pixels.

src A string that specifies the source SWF file. The value is either absolute or
relative. (You can only set this value in the product.xml file’s pod tag or
podClass tag.)

enabled A Boolean value that specifies whether the pod has been added and is
available to the user. This value is only returned when calling getPods();
don’t set it in the object you pass to addPod().

appid A number set by Central to associate a pod with your application.

supportedTypes An array containing strings that identify the data types that this pod can
exchange through the Blast feature. (You can only set these types in the
product.xml file’s supportedTypes tag within the pod or podClass tags.)

initialData An optional property of any data type that you set at the time you trigger
addPod(). You can determine this value later when you reference a pod.

Property Description
AgentManager object 149

The hierarchy of application, pod, and podClass is important. As long as your application has at
least one pod defined in the product.xml file, the user can instantiate multiple pods in the
Console. While the Console only lists applications with pods available, it won’t list your
application more than once. This is true even if you include multiple pod tags (in the product.xml
file) or if you create multiple instances of a pod (either with addPod() or through the
product.xml file). If an application has more than one pod available, the user will see that choice
in a secondary pop-up menu inside the pod itself (next to where the pod’s name appears).

Generally speaking, the user has the ultimate control over how pods are presented. However,
through addPod(), your application can make more pods available, and through viewPod()
added pods can be displayed. There are also methods to determine which pods are available and
which are currently being viewed (getPods() and getViewedPods() respectively). In addition,
with a podID you can use the removePod() method to eliminate a particular pod. However, this
is not the same as a user closing a pod—removePod() makes the pod unavailable. There are lots
of options available, but keep in mind that the goal is to provide the user with intuitive tools that
provide flexibility during development.

AgentManager.addToLocalInternetCache()

Availability

Macromedia Central.

Usage

shellReference.addToLocalInternetCache(url [, bOverwrite, expiration])

Example

// this example adds a JPG to the cache, loads it, then checks if successful
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

var theFile="http://www.mysite.com/images/photo.jpg"
// add it to the cache
gShell.addToLocalInternetCache(theFile);
someClipInstance.loadMovie(theFile);

// check that the disk quota wasn’t exceeded
if(gShell.inLocalInternetCache(theFile)==true)
{

// trigger homemade function to explain the image wasn’t downloaded
myAlertFunction("The photo won’t be available when offline");

}

};

Parameters

url String; a fully qualified URL where the file to be cached resides.
150 Chapter 10: API Reference

bOverwrite Optional parameter; a Boolean value that indicates whether to overwrite
preexisting files of the same name. If the value of bOverwrite is true and the file indicated as the
url value is already in the cache, Central overwrites the file. The default value for bOverwrite is
false.

expiration Optional parameter; either a Date object or a number. This value indicates when
the locally cached file will be considered out of date. If you provide a Date object for this value,
Central considers the file current until the date indicated. If you do not include an expiration
date, the default expiration for any cached file is three days. If you provide a number for this
value, Central considers the file current for that number of days.

Returns

None.

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application, respectively, to
add a URL to the local Internet cache. Subsequent requests for that URL by any application in
Central will retrieve that data from the cache rather than from the web, enabling products to use
data even when the user is offline. To ensure your application loads the URL from the Internet,
first call addToLocalInternetCache() with the bOverwrite parameter set to true.

Note: Central considers file types of Portable Executable formats (DLL, EXE, OCX, and so on)
unsafe and will not add them to the local Internet cache.

Usually, you’ll call the addtoInternetCache() method before loading an image or data file.
Regardless of how long the download takes, you can immediately call a command such as
loadMovie() to load the same file. Adding to the cache simply means that file is saved on the
user’s hard disk. Although the addtoIntenetCache() method does download the file, it
primarily adds URLs to a list from which Central always checks before attempting to download
from the Internet.

Files do not expire when a user is offline. Similarly, once a file is expired it isn’t automatically
removed from the cache. Rather, subsequent attempts to load that URL attempt to access the
Internet unless the user is offline. If the user is online and the inLocalInternetCache() method
is called, the file in question will be removed from the cache if it’s expired. If the user is online and
the addToInternetCache() method is called, the file in question will be overwritten if it’s
expired.

If the value of the bOverwrite parameter is true and that URL is already in the cache, the file
will be overwritten.

The user sets the cache size limit in the Central user preferences. The default size for space shared
by all applications running in Central is 20 MB. All applications share this limited space. When
the cache contents exceeds 20 MB, the user is asked for more space for local Internet files. If
refused, the file is not cached. You can check for success by calling inLocalInternetCache().

When caching files, the files are identified by their URL. However, Central does not distinguish
between separate hosts within the same domain. For example, Central considers the following
two URLs as the same:
AgentManager object 151

http://www.mydomain.com/pub/myFile.swf
http://applications.mydomain.com/pub/myFile.swf

You can cache files from multiple hosts within a domain as long as the paths to the files are
unique across these hosts.

Note: The size limitation for a URL to add to cache is 129 characters (URLs with more than 129
characters will not be added to cache).

AgentManager.getNotices()

Availability

Macromedia Central.

Usage

arrayOfStructures=shellReference.getNotices()

Example

// This example creates notice when the user starts or stops your app.
// It uses getNotices() so that it can remove any matching notices.
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;
makeNonDuplicatedNotice("STARTUP");

};

onDeactivate=function()
{

makeNonDuplicatedNotice("SHUTDOWN");
};

makeNonDuplicatedNotice=function(theType){
// first see if there are any existing notices that match this type
var currentNotices=gShell.getNotices();
for(var i=0;i<currentNotices.length;i++)
{

var thisNotice=currentNotices[i];
if(thisNotice.appData==theType)
{

gShell.removeNotice(thisNotice.id);
break;

}
}

// make a new notice
var now=new Date();
var noticeData = new Object();
var initialData = theType;

// make part unique
if(theType=="STARTUP")
152 Chapter 10: API Reference

{
noticeData.name = "Start up time";
noticeData.description = "You started this app at "+now.toString();

}
else
{

noticeData.name = "Shut down time";
noticeData.description = "You closed this app at "+now.toString();

}

// set the rest of the properties
noticeData.alert = false;
noticeData.navigate = false;
noticeData.engageString = null;
noticeData.timeout = 0;

gShell.addNotice(noticeData, initialData);
};

Parameters

None.

Returns

An array of structures, each with the following properties:

noticeData An object containing several properties with detailed information about the
notice. The following are the available properties:

Property Description

creationTime Date object containing the exact time the notice was created.

appID A unique numeric ID for the application that created the notice. This is the
same value received by the onActivate() event.

id A unique numeric ID for this notice. This is the same value returned when
you call addNotice().

initialData Can be any data type, passed as the second parameter when you issue
addNotice(). For details on how this lets you pack a notice with custom
data, see addNotice().

noticeData An object that contains general information about the notice, as
described next.

Property Description

id A number that represents the notice ID. This is the same ID returned
when the notice is first created using addNotice(). That is, you don’t set
this property when you create the notice.

name A string to be displayed in the notice’s title bar. If not specified, the default
value of name is:
application name Notice
AgentManager object 153

AgentManager, Console, or Shell method; called by an agent, pod, or application, respectively, to
get the currently active notices that your application created. The getNotices() method is one
of many methods that help you manage the notices you produce. You don’t want to inundate your
users with useless notices.

When you invoke the addNotice() method, an ID number is returned (that you can use when
call removeNotice()). When a notice is dismissed, the onNoticeEvent() callback triggers with
complete details. Finally, you can always find complete details regarding the existing notices any
time by using the getNotices() method.

AgentManager.getPods()

Availability

Macromedia Central.

Usage

podData=shellReference.getPods()

Example

// displays a list of all available pods and adds an option to remove
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;
refreshListofAllPods();

myButton.onPress=function(){
gShell.removePod(myListComponent.getSelectedItem().data);
refreshListofAllPods();

description Longer string to be displayed in the notice’s body. The default is an empty
string.

timeout A number that specifies the seconds after which the notice should be
automatically dismissed. Set timeout to 0 to create a notice that never
times out.

alert A Boolean value that indicates whether the notice should be brought to
the user’s attention, rather than recorded in the Console.

engageString A short string; displayed on the engage button. If not specified, no
engage button appears.

navigate A Boolean value that indicates whether the shell should start the
appropriate application when the user selects engage.

unread A Boolean value that indicates whether the notice has been viewed by
the user.

Property Description
154 Chapter 10: API Reference

};
};
refreshListofAllPods=function()
{

// clear the list component to be populated
myListComponent.removeAll();

// get an array of all the pods
var allPods=gShell.getPods();

// loop through the pods extracting their names and IDs
for (var i=0; i<allPods.length; i++)
{

var thisPod=allPods[i];
// add this pod's name and id to an MListBox component instance
myListComponent.addItem(thisPod.name, thisPod.id);

}
};

For additional examples of this method, see AgentManager.removePod().

Parameters

None.

Returns

An array of podData structures for all pods available to this application. The values for a podData
structure are set in the product.xml file or by a script calling addPod() or, in the case of appId
and id, by Central itself. For reference, the entire podData object documentation is shown below.

podData Pod data object containing several properties. This is the single parameter used any
time you create, destroy, or simply reference a pod. A podData object includes the following
properties:

Property Description

id A numeric unique ID returned when you call addPod(), so that you can
later reference the pod. Do not set this property when adding the pod.

name A string that specifies the name displayed on the pod itself. The name in
the pop-up menu at the top of the Console always matches your
application name. One application can have multiple pods, each with its
own name.
AgentManager object 155

AgentManager, Console, or Shell method; gets the list of all pods available to this application.
This includes pods listed in the product.xml file as well as any created by the addPod() method.
To get a list of only those pods currently arranged in the Console, use the getViewedPods()
method instead.

Realize that your application will only be listed once in the Console’s pod selection pop-up menu
(provided your application has at least one pod). For an application with more than one pod, the
user will see a secondary pop-up menu inside the pod (adjacent to the pod’s name). The
getPods() method returns an array of all the pods that will appear in that secondary pop-up
menu.

className A string that specifies the name of the class, as defined in the product.xml
file, that refers to a particular implementation of the pod. If your
application uses only one pod, you won’t need a pod className.
However, if you plan to have multiple pod instances based on the same
template, you should define both a podClass and your pod. You need to
define the podClass element separately. For example, suppose that you
describe the podClass tag as follows:
<podClass name="className" src="pod.swf"/>
You can then create instances of this podClass in one of two ways. First,
using the product.xml file, you can add the following pod tag:
<pod name="display name" className="className"/>

The second way to create an instance of this podClass is when creating a
new pod using addPod, as follows:
podData.name="display name";
podData.className="className";

Note: When using ActionScript 2.0, avoid .class; it is a reserved word.
Use className.

height An optional numeric parameter that you may declare to set the height, in
pixels, of the pod instance. The default height is 100. Pod widths are fixed
at 170 pixels.

src A string that specifies the source SWF file. The value is either absolute or
relative. (You can only set this value in the product.xml file’s pod tag or
podClass tag.)

enabled A Boolean value that specifies whether the pod has been added and is
available to the user. This value is only returned when calling getPods();
don’t set it in the object you pass to addPod().

appid A number set by Central to associate a pod with your application.

supportedTypes An array containing strings that identify the data types that this pod can
exchange through the Blast feature. (You can only set these types in the
product.xml file’s supportedTypes tag within the pod or podClass tags.)

initialData An optional property of any data type that you set at the time you trigger
addPod(). You can determine this value later when you reference a pod.

Property Description
156 Chapter 10: API Reference

For more information see getViewedPods(), addPod(), and viewPod().

AgentManager.getPreferences()

Availability

Macromedia Central.

Usage

prefObject=ref.getPreferences()

Example

// Displays as customized a message as possible at startup
onActivate=function(shell)
{

// set a variable to reference the Shell or Console
gShell=shell;

// get all the preferences
var all=gShell.getPreferences();

// prepare a field to populate
message_txt.text="";

// encourage them to enable background tasks, just in case
if(all.agentsEnabled==false)
{

message_txt.text+="Please enable background tasks."+newline;
}

// if we can’t find first or last name, use a generic message
if(all.userData.firstName==null || all.userData.lastName==null)
{

message_txt.text+="Welcome!"+newline;
}
else
{

message_txt.text+="Welcome "+all.userData.firstName+" "
+all.userData.lastName+"."+newline;

}

// if the locations value isn’t null
if(all.locations!=null)
{

// store the location profile from the appropriate index
var here=all.locations[all.currentLocationIndex];

// fashion a personalized message to display
message_txt.text+="You’re probably glad to be "

+here.label+ " in beautiful "+here.city+".";
}

};
AgentManager object 157

Returns

prefObject Object containing details from the user’s global preference settings. Depending on
how much access the user has given to your application, you can find the values for some or all of
the following properties.

Description

AgentManager, Console, or Shell method; called by the pod or application to get the general
Central preferences the user has exposed to your application. The value for the agentsEnabled
property matches the user’s setting for whether background tasks are allowed (set in the Advanced
Preferences dialog box). This value is always available. In fact, you’ll also see values for the
userData, locations, and currentLocationIndex properties (based on settings under the
Identity & Location Preferences dialog box). However, the values are all null by default and
won’t be available until the user has specifically allowed your application access to this data. It’s
easiest to visualize these properties and subproperties while viewing the Identity & Location
Preferences dialog box.

AgentManager.getViewedApplications()

Availability

Macromedia Central.

Usage

arrayOfApplicationRecs=shellReference.getViewedApplications()

Example

// this example stops users from launching multiple instances of your app
function onActivate(shell)
{

Element Description

userData A structure with three properties:
{firstName: xxx,
lastName: xxx,
email: xxx}

locations An array of structures, each with the following properties:
{label: xxx,
address1: xxx,
address2: xxx,
city: xxx,
state: xxx,
zipcode: xxx,
phone: xxx,
country: xxx,
latitude: xxx,
longitude: xxx,}

currentLocationIndex An index indicating the currently selected location (within the locations
array).

agentsEnabled A Boolean value that indicates whether agents are enabled.
158 Chapter 10: API Reference

gShell=shell;

var activeApps = gShell.getViewedApplications();

if(activeApps.length>1)
{

myAlertDialog("You're already running this app in another window");
}

};

Parameters

None.

Returns

An array of applicationRecs structures that contain details about each instance of your
application. Each applicationRec structure has the following two properties:

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application to get the list of
all the shell instances running your application. Naturally, this method only returns information
about your applications. You can use the getViewedApplications() method to prevent users
from launching multiple instances of your application (as the example shows). Also, if you
develop a multi-window application, you can use the IDs gathered to set up unique
LocalConnection channels (although it’s often simpler to use the LCService object).

AgentManager.getViewedPods()

Availability

Macromedia Central.

Usage

arrayOfPodStructures=shellReference.getViewedPods()

Example

// displays a detailed list of currently viewed pods
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// trigger our refresh function
refreshListOfActivePods();

Property Description

appID Number indicating the unique ID for your application. (All instances of
your application share this number.)

shellID Number indicating the unique ID for the particular shell running the
application. (You can think of this as an ID for the Central shell.)
AgentManager object 159

// give a button the ability to trigger our refresh function
myButton.onPress=function()
{

refreshListOfActivePods();
};

};
refreshListOfActivePods=function()
{

// clear the list component to be populated
myListComponent.removeAll();

// get an array of the currently viewed pods

var activePods=gShell.getViewedPods();

// loop through the pods extracting some data for each one
for (var i=0; i<activePods.length; i++)
{

var thisPod=activePods[i];
var thisLabel=thisPod.podData.name+

 " (slot: "+thisPod.position+") "+
 ((thisPod.collapsed)?"is not open":"is open");

myListComponent.addItem(thisLabel);
}

};

Parameters

None.

Returns

An array of structures for each pod currently visible. The structures have the following properties:

Property Description

viewerID Number indicating a unique ID for the pod instance. This is the same
number received as the third parameter in the pod’s onActivate()
handler.

position Number indicating the current ordinal position of the pod (not the pixel
location). Counting from the top, the uppermost pod is in position 0, then
position 1, and so on.

collapsed A Boolean value that indicates whether the pod is in the collapsed state.

podData A Pod data object as specified in the product.xml file or defined when you
call addPod(). For details on the properties contained in a podData object,
see getPods().
160 Chapter 10: API Reference

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application to get the list of
this application’s currently viewed pods in the console. These are simply pods positioned in the
Console (regardless of whether the console happens to be open). To get a list of all initialized pods
initialized (that is, pods available to the user), regardless of whether they’ve been loaded in the
Console, see AgentManager.getPods() on page 154.

To determine whether the console is open, use AgentManager.isConsoleOpen().

The getViewedPods() method only returns pods for your application.

While you can use the removePod() method (given the id property inside the podData property)
this won’t just close the pod but will actually remove it from the pods available to the user. There
is no “close pod” method.

AgentManager.inLocalInternetCache()

Availability

Macromedia Central.

Usage

myBoolean=shellReference.inLocalInternetCache(url);

Example

// this example function loads images with the ultimate user control
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// trigger our homemade function
loadImage("background.jpg");

}

loadImage=function(theImage, override)
{

var imagePath="http://www.mysite.com/images/"+theImage;

// if the image is already present (or they’re overriding)
if(gShell.inLocalInternetCache(imagePath)==true || override==true)
{

//add the image and load it into a clip instance
error_txt.text="Loading "+theImage;
gShell.addToLocalInternetCache(imagePath);
clipInstance.loadMovie(imagePath);

}
else
{

// if they’re connected
if(gShell.isConnected()==true)
AgentManager object 161

{
// get their approval by making the button set override to true
error_txt.text="Do you want to download "+theImage+"?";
okay_btn.onPress=function(){ loadImage(theImage,true) };

}
else
{

// if they’re not connected just let them try again
error_txt.text="Connect then press the okay button";
okay_btn.onPress=function(){ loadImage(theImage)};

}
}

};

Parameters

url A string; fully qualified path that provides the location of the file to be added to the local
Internet cache.

Returns

A Boolean value; true if the URL is in the local Internet cache, false if not found.

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application to check if a
URL is in the local Internet cache. There are several strategies that might require this method.
Before requiring a user to endure a long download, you can first check if the file is available
locally, in which case, you get the user’s approval first. Also, if the user has indicated that they’re
not online and the file is not available locally, you can tell them they need to go online first.
Finally, the inLocalInternetCache() method provides an indirect way to confirm that attempts
to add files to the local Internet cache are successful, as described in the following best practice.

Note: Central considers file types of Portable Executable formats (DLL, EXE, OCX, and so on)
unsafe and will not add them to the local Internet cache.

It’s a good idea to always confirm the success of any addToLocalInternetCache() call by
immediately issuing the inLocalInternetCache() method with an appropriate follow-up action
if the method returns a value of false. This is because if the user’s 20 MB cache is exceeded and
they don’t allow an increase, then addToLocalInternetCache() effectively fails.

When caching files, the files are identified by their URL. However, Central does not distinguish
between separate hosts within the same domain. For example, Central considers the following
two URLs as the same:
http://www.mydomain.com/pub/myFile.swf
http://applications.mydomain.com/pub/myFile.swf

You can cache files from multiple hosts within a domain as long as the paths to the files are
unique across these hosts.
162 Chapter 10: API Reference

AgentManager.isConnected()

Availability

Macromedia Central.

Usage

myBoolean=shellReference.isConnected()

Example

// this example checks the connection state at startup
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// take current state and trigger onNetworkChange (where our code resides)
this.onNetworkChange(gShell.isConnected());

};

onNetworkChange=function(connected)
{

// save the connection state in a variable
gOnline=connected;

// display a visual online indicator
onlineGraphic_mc._visible=gOnline;

};

Parameters

None.

Returns

A Boolean value: true if the user is connected, false if offline.

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application to determine
current network status. You should consolidate all your code related to connectivity inside the
onNetworkChange() handler. Although Central triggers onNetworkChange() automatically, it
only does so when the connection status changes. Therefore, you need to use isConnected()
initially to bring your application in sync. The example shows how an application can trigger its
own onNetworkChange() handler (though usually Central does this). This way, all the code is
consolidated in one place. There’s no reason to repeatedly check isConnected() from multiple
places in your code.
AgentManager object 163

AgentManager.isConsoleOpen()

Availability

Macromedia Central.

Usage

myBoolean=shellReference.isConsoleOpen()

Example

// this example adds a notice in order to open a closed Console at startup
onActivate=function(shell)
{

// set a variable to reference the AgentManager or Shell
gShell=shell;

if(gShell.isConsoleOpen()==false)
{

var noticeData = new Object();
noticeData.alert = true;
noticeData.name = "Welcome to my app!";
noticeData.description = "You'll need the Console in this app";
gShell.addNotice(noticeData);

}
};

Parameters

None.

Returns

A Boolean value: true if the Console is currently open, false if it is closed.

Description

AgentManager or Shell method; called by an agent or an application to determine if the Console
is open. You might want to check whether the Console is open before you add or open new pods.
Additionally, because some commands cause the Console to open (for example, adding a notice
with its alert property set to true) you should first check whether the Console is open before
deciding your approach.

Unlike most methods available from agents, applications, and pods, the isConsoleOpen()
method is not available from a pod.

AgentManager.removeFromLocalInternetCache()

Availability

Macromedia Central.
164 Chapter 10: API Reference

Usage

shellReference.removeFromLocalInternetCache(URL)

Example

// this example attempts to free up space in the user’s cache when appropriate
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// add a new image to the local cache and load it into a clip
var imagePath="http://www.mysite.com/images/";
var theImage="photo.jpg";
gShell.addToLocalInternetCache(imagePath+theImage);
clipInstance.loadMovie(imagePath+theImage);

// if the new image isn’t present that means the cache is full
if(gShell.inLocalInternetCache(imagePath+theImage)==false)
{

// take a list of previously loaded images (could be dynamic)
myImageList=["big1.jpg", "big2.jpg", "big3.jpg"];

// and remove each one
for(var i=0;i<myImageList.length;i++)
{

gShell.removeFromLocalInternetCache(imagePath+myImageList[i]);
}

}
};

Parameters

url Fully qualified location of the file to be removed from the local Internet cache.

Returns

Nothing.

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application, respectively, to
remove a URL from the local Internet cache. Subsequent requests for that URL by any
application in Central will retrieve that data from the web rather than from the cache.

The file in question must be in the local Internet cache for this method to work. That means that
previously an application must have issued addToLocalInternetCache(). Another way to
remove a file from the local Internet cache is by setting an expiration date when invoking
addToLocalInternetCache(). Finally, the Shell.addToLocalInternetCache() method also
has an overwrite parameter which effectively removes a file by replacing it. For more information,
see addToLocalInternetCache().
AgentManager object 165

AgentManager.removeNotice()

Availability

Macromedia Central.

Usage

myBoolean=shellReference.removeNotice(noticeID)

Example

// this example creates 3 notices and removes all 3 when any one is dismissed
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// create an array to store IDs for the notices we create
gPostedNotes=new Array();
//create a notice, set its name, and add it
var noticeData = new Object();
noticeData.engageString="Remove";
noticeData.name = "One";
gPostedNotes.push(gShell.addNotice(noticeData));
noticeData.name = "Two";
gPostedNotes.push(gShell.addNotice(noticeData))
noticeData.name = "Three";
gPostedNotes.push(gShell.addNotice(noticeData))

};

onNoticeEvent=function(event, noticeData, initialData)
{

// while gPostedNotes still has items remaining
while(gPostedNotes.length>0)
{

// pop one off and remove it
var thisNotice=gPostedNotes.pop();
gShell.removeNotice(thisNotice);

}
};

Parameters

noticeID A number identifying the specific notice you want removed. You can use the number
returned when you create a notice using the addNotice() method. You can also use an id
property of any object within the array of notices objects returned from the getNotices()
method.

Returns

A Boolean value: true if the notice was removed, otherwise false.
166 Chapter 10: API Reference

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application, respectively, to
remove a notice. You can only remove notices that your application created.

The most direct way to track IDs is to store them as you use addNotices(). However, this can be
difficult because users can dismiss notices (in which case you’ll have to trap the onNoticeEvent()
event) and they might leave the notices untouched when they quit Central (in which case you’ll
have to save a LocalShared object). Probably the easiest tracking method is to include initial data
in the second parameter of your addNotice() call. Use getNotices() and then step through
each item returned looking for a matching appData property.

A best practice is to minimize the total number of notices by first deleting old notices and then
replacing them with new ones containing up-to-date information. For an example of this practice,
see Shell.getNotices().

AgentManager.removePod()

Availability

Macromedia Central.

Usage

shellReference.removePod(id)

Example

// product.xml excerpt from within the <application> tag:
<podclass name="myRegularPod" src="pod.swf"/>
<podclass name="mySpecialPod" src="specialpod.swf"/>

<pod name="myDefaultPod" className="myRegularPod" />

// this example temporarily exposes a special pod for the user to open
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// give the user the opportunity to access the special pod class
gCounter=0;
my_btn.onPress=function()
{

gCounter++;
if(gCounter==3)
{

// add a new pod
var podData=new Object();
podData.name="special #3";
podData.className="mySpecialPod";
gSpecialPodID=gShell.addPod(podData);

}
if(gCounter==4)
AgentManager object 167

{
// remove the special pod
gShell.removePod(gSpecialPodID);

}
}

};

Parameters

id A number returned when calling the addPod() method to create a pod. You can also use an
id property of any object within the array of objects returned to the getPods() method.

Returns

Nothing.

Description

AgentManager, Console, or Shell object method; called by an agent, pod, or application,
respectively, to remove a pod. Although this method removes from view any pods currently
arranged in the Console, it works differently from the way the user manually closes a pod. In the
case of removePod(), you aren’t removing an individual pod SWF instance, but rather removing
a pod instance once associated with your application. Naturally, if a matching pod is present in
the Console, it must be closed, but using removePod() means the user will no longer be able to
add that pod instance manually. There is no “close pod” method.

For more information about pods and pod classes see the entry for Console.addPod(). For more
information about the difference between application pods and currently viewed pods, see the
entries for Console.getPods() and Console.getViewedPods(), respectively.

Central automatically removes all pods associated with an application when a user uninstalls the
application.

AgentManager.stopAgent()

Availability

Macromedia Central.

Usage

myBoolean=shellReference.stopAgent()

Example

// this example stops and starts the agent as connection status changes
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

};

onNetworkChange=function(connected)
{

if(connected==false)
168 Chapter 10: API Reference

{
gShell.stopAgent();

}
else
{

// this only works from an application or pod (not agent)
gShell.startAgent();

}
};

Parameters

None.

Returns

A Boolean value: true if the agent was successfully stopped, otherwise false.

Description

AgentManager, Console, or Shell method; called by an agent itself, a pod, or an application to
stop the agent SWF file (listed in the product.xml file). After it stops, the agent won’t start again
until you call startAgent() from an application or pod instance. In fact, agents do not start
automatically unless the product.xml file’s agent tag includes the attribute started="true".

Note: Your application can only have one agent.

A best practice is to keep as much code as possible in your agent. In such a case, the stopAgent()
method has questionable value. However, if your agent is primarily executing background tasks
using setInterval(), it might be easiest to first clear all the intervals and then simply call
stopAgent(). Additionally, if you design an application to use the agent only temporarily, then it
makes sense to use stopAgent() (and startAgent()).

Note: You don’t need to remove agents when the user uninstalls your application; Central does this
for you.

AgentManager.viewPod()

Availability

Macromedia Central.

Usage

shellReference.viewPod(podID [, bForce])

Example

// This example adds a pod only after the user first runs the app.
// It requires you to define a PodClass named "post_install" in the product.xml

onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;
AgentManager object 169

// check to see if the pod is installed
var foundID=null;
var allPods=gShell.getPods();
for(var i=0;i<allPods.length;i++)
{

if(allPods[i].className=="post_install")
{

foundID=allPods[i].id;
gPodID=foundID;
break;

}
}

// create it if it wasn’t found
if(foundID==null)
{

var podData=new Object();
podData.name="Post Install Pod";
podData.className="post_install";
gPodID=gShell.addPod(podData);

}

// give the user a way to view the pod
podOpen_btn.onPress=function()
{

// should first use getViewedPods to avoid multiple views of this pod
//as is, this will view the pod added or found above
gShell.viewPod(gPodID);

};
};

Parameters

podID The number returned when calling addPod() to create a pod. You can also use an id
property of any object within the array of objects returned to the getPods() method.

bForce Optional parameter that forces the creation of a new pod viewer in the Console. The
bforce parameter is a Boolean value. If true (or omitted), viewPod() forces the creation of a
new pod viewer in the Console. If false, a new pod viewer is created only if the pod referred to
by podID is not already viewed in the Console (so no duplicate pods appear).

Returns

Nothing.

Description

AgentManager, Console, or Shell method; called by an agent, application, or pod, respectively, to
open a specific pod instance so that it becomes visible in the top slot of the Console. All of the
other visible pods are moved down in the console.
170 Chapter 10: API Reference

To call viewPod() you need a podID parameter. This means that you either must have used a
script to call addPod(), which returns an id, or used the getPods() method to get an array full
of structures (each one including an id). Using the getPods() method might seem to be
haphazard if your application has more than one pod, as you wouldn’t know which item in the
array was for which pod. However, the data in the array returned from getPods() includes other
details, including any initial data that you can specify in the product.xml file. It is probably most
intuitive to simply use viewPod() immediately after the creation of a pod by using the addPod()
method, as the example shows.

A best practice is to only call the viewPod() method in response to a direct user action. The user
should choose how to best populate the Console.

Application object

ActionScript Class Name mx.central.Application

The Application object is equivalent to your application SWF instance. That is, your main
application SWF instance becomes an instance of the Application object. The methods listed in
this section give your application a way to return information to Central when requested. The
event handlers listed give your application a way to react to global events triggered by Central. To
use any of these, simply replace Application with this (provided you’re in your application
SWF instance).

Method summary for the Application object

Property summary for the Application object

Method Description

Application.getMinimumSize() Called by the shell to determine the minimum size for your
application. You write this method in your application and return
data to the shell.

Application.showPreferences() Called by the shell, when the user chooses the application
preferences menu item. This is your cue to trigger code that
displays a custom preference dialog box.

Property Description

None.
Application object 171

Event handler summary for the Application object

Application.getMinimumSize()

Availability

Macromedia Central.

Usage

getMinimumSize=function()
{

//ensure that your application is never shown smaller than 550x400
return {width:550, height:400};

}

Parameters

None.

Returns

An object with two properties representing the minimum width and height at which you want to
allow your application to be displayed.

width Integer; minimum width at which your application can be displayed. Central won’t allow
minimum widths less than 500.

height Integer; minimum height at which your application can be displayed. Central won’t
allow minimum heights less than 300.

Event handler Description

Application.onActivate() Called by the shell when an application is instantiated (that is,
becomes active).

Application.onDeactivate() Called by the shell when a application is about to be taken off
screen. (This includes the instant before Central closes if the
user exits.)

Application.onNetworkChange() Called by the shell when the connection status changes.

Application.onNoticeEvent() Called by the shell when a notice created by its application is
engaged or closed by the user or gets removed
programmatically using a script or time out.

Application.onPaymentResult() Reserved. Interface currently unavailable.

Application.onResize() Called by the shell when the application window is resized.

Application.onSelectedItem() Called by the shell any time your application receives Blast data.
This includes the user manually selecting your application from
the Blast menu or when the Send Automatically item is enabled.
In either case, it always begins with the other application making
a selection of a data type that matches one listed in your
product.xml file’s supportedTypes tag.

Application.onUninstall() Called by the shell when your application is being uninstalled
from Central.
172 Chapter 10: API Reference

Description

Application callback method; called by the shell to get the minimum size of your application.
This is not a method that you can call, but rather one that you write so that Central (the shell)
can find the information it needs. If you do not provide this callback, the default minimum size
of your application will be set to width:500, height:300. If a user switches from another,
smaller, application to your application, the application window will expand to fit the values
provided here.

Application.onActivate()

Availability

Macromedia Central.

Usage

onActivate = function(shell, appID, shellID, baseTabIndex, initialData)
{

//set a variable to reference the Shell
gShell = shell;

//trigger our own onNetworkChange handler
//using the current connection status
this.onNetworkChange(gShell.isConnected());

//trigger our own onResize handler for layout purposes
this.onResize();

//create a unique name for use with LocalConnection
gUniqueName=appID+"_"+shellID;

//set the starting tabIndex so our app can be accessible
gBaseTab=baseTabIndex;
username_txt.tabIndex=gBaseTab;
password_txt.tabIndex=gBaseTab+1;
continue_btn.tabIndex=gBaseTab+2;

};

Parameters

shell Shell object; use this reference to call any functions in the Central Shell API.

appID Number; unique ID for this application. This number is common to all pieces in your
application (application, pods, and agent). Therefore it’s appropriate for use in naming your
LocalShared objects.

shellID String; a unique ID for the particular shell instance (Central window) in which this
application is running. This unique string can help identify a single application instance when
using LocalConnection objects.

setBaseTabIndex Number; used for accessibility—your application should set the tab indexes
on controls such as buttons and text fields starting with this number so it doesn't interfere with
surrounding shell controls (such as Central’s toolbar).
Application object 173

initialData Any data type; passed to your application at launch (primarily from the
product.xml file’s initialData tag).

Returns

Nothing.

Description

Application event handler; called by the shell when your application instantiates. When your
SWF instance calls Central.initApplication(), this method is called once initialization is
complete.

You pass initialData by declaring it in the application’s product.xml file using the
initialData tag. Alternatively, a pod can send initialData when it calls
shellReference.loadApplication(). This way the data can be dynamic.

A best practice is to keep a reference to the shell hosting your application (gShell in this
example) so that you have an object onto which you can attach subsequent calls to the
Application API:
gShell = shell;
if(!gShell.inLocalInternetCache("http://www.mysite.com/my_photo.jpg")){

gShell.addToLocalInternetCache("http://www.mysite.com/my_photo.jpg");
}

In addition, it’s a good practice to trigger all the handlers (that keep your application refreshed)
once in the onActivate() handler. For example:
this.onNetworkChange(gShell.isConnected());

Note: In order to consolidate the code samples shown for features common to the AgentManager,
Shell, and Console many examples show just the first parameter (shell in this case) being saved in a
variable (shown as gShell). Although each of these three objects have slightly different
implementations of onActivate, they all start with a reference to the respective managing object.

Application.onDeactivate()

Availability

Macromedia Central.

Usage

onDeactivate=function()
{

// perform clean up
clearInterval(gMyInterval);
mySharedObject.data.closingTime=new Date();

};

Parameters

None.

Returns

Nothing.
174 Chapter 10: API Reference

Description

Agent, application, or pod event handler; called by the respective shell the instant before an agent,
application, or pod instance is unloaded. Central triggers the onDeactivate() method each time
the user uninstalls or updates an application, or exits Central. The onDeactivate() event should
clean up any global references, including the following:

• Global variables
• Open network connections
• Open Local Connections
• Open LCService and LCDataProvider objects
• Events triggered by setInterval (using clearInterval())

Code you place inside the onDeactivate() method is ensured to run and is also the last code to
execute code before Central shuts down.

Application.onNetworkChange()

Availability

Macromedia Central.

Usage

onNetworkChange = function (connected)
{

// save connection state in a variable
gOnline = connected;

// display a visual online indicator
onlineGraphic_mc._visible=gOnline;

// if online now, try to connect to web services proxy
if (gOnline==true)
{

myBackgroundTask("start");
}
else
{

myBackgroundTask("stop");
}

};

Parameters

connected Boolean value: true if user is connected; false if offline.

Returns

Nothing.
Application object 175

Description

Agent, application, or pod event handler; called by the respective shell when the connection status
(online or offline) changes. The shell does not automatically check for connectivity; it simply
follows the user setting made in the File menu (either work online or work offline) or when the
user selects the network icon (lightning bolt). To determine if the user is online when the
application first loads, use the isConnected() method. You can then manually trigger your own
onNetworkChange() handler so that your contained scripts run. That is, Central only triggers
onNetworkChange() when users manually change their connection status. To check the status
using a script, use the isConnected() method.

Central can’t automatically recognize whether a computer is connected to the Internet; it honors
the user’s setting.

A best practice is to first check the current status (using isConnected()) and save that status in a
variable. Do not attempt online access when the status is false. When onNetworkChange()
reports true (in other words, when going back online), reestablish any background network
access, connecting to data, and updating as needed. For example, call a setInterval function to
periodically call a web service and get up-to-date information. For more information on using the
agent to manage data, see Chapter 2, “Understanding the Macromedia Central Environment,” on
page 19.

Application.onNoticeEvent()

Availability

Macromedia Central.

Usage

// Handle a change to an existing Notice from this app
onNoticeEvent = function (event, noticeData, initialData)
{

// trace the properties contained in this notice
trace("event.type="+event.type);
trace("optional data from issuing app "+initialData);
for (var i in noticeData){
trace("noticeData."+i+"="+noticeData[i]);
}

// respond according to the event type
switch (event.type){

case "close":
message_txt.text="notice id "+noticeData.id+" was closed";
break;

case "engage":
message_txt.text="you engaged "+noticeData.description;
break;

case "timeout":
176 Chapter 10: API Reference

message_txt.text="elapsed time reached "+noticeData.timeout;
break;

case "remove":
message_txt.text="removed the notice named "+noticeData.name;
break;

}
// remove this notice from the list of notices we’re maintaining
if(event.type!="engage"){

myRefeshListofNotices();
}

};

Parameters

event An object containing one string element, type, that provides the reason for the notice’s
dismissal. The type element has one of the following values:

noticeData An object containing several properties with detailed information about the
notice. The following are the available properties:

Value Description

close Closed by the user by selecting the close box in the notice list.

engage Closed by the user by selecting the engage button as in the notice detail.

timeout Dismissed by Central because the notice has timed out.

remove Dismissed by the application through a call to removeNotice().

Property Description

id A number that represents the notice ID. This is the same ID returned
when the notice is first created using addNotice(). That is, you don’t set
this property when you create the notice.

name A string to be displayed in the notice’s title bar. If not specified, the default
value of name is:
application name Notice

description Longer string to be displayed in the notice’s body. The default is an empty
string.

timeout A number that specifies the seconds after which the notice should be
automatically dismissed. Set timeout to 0 to create a notice that never
times out.

alert A Boolean value that indicates whether the notice should be brought to
the user’s attention, rather than recorded in the Console.

engageString A short string; displayed on the engage button. If not specified, no
engage button appears.

navigate A Boolean value that indicates whether the shell should start the
appropriate application when the user selects engage.

unread A Boolean value that indicates whether the notice has been viewed by
the user.
Application object 177

initialData Any data type specifying application-specific data passed at the time you call
addNotice().

Returns

Nothing.

Description

Agent, application, or pod event handler; invoked in an agent, application, or pod when a notice
created by your application is dismissed. Any of the following events will trigger
onNoticeEvent(): when the user clicks the close box or clicks the engage text, if the notice times
out, or the notice is removed programmatically through the removeNotice() method.

The specific values contained in the noticeData and initialData come from the initial call to
addNotice(). The onNoticeEvent() is not triggered unless your application first creates a
notice through addNotice(). For an example of how to create a notice and add it, see
AgentManager.addNotice() on page 146.

A common use of this method is to include more detail about a notice in a related window.
Presumably your user wanted the notice. The onNoticeEvent() handler is your opportunity to
give the user further details. By passing application-specific data through initialData, the
application can show the correct item related to a notice (for example, a stock chart view related
to a notice about that stock).

Application.onPaymentResult()

Availability

Reserved. Interface currently unavailable.

Description

Reserved. Interface currently unavailable.

Application.onResize()

Availability

Macromedia Central.

Usage

onResize=function()
{

//execute layout scripts as the stage size changes
};

Example

onActivate=function(shell)
{

//set a variable to reference the Shell
178 Chapter 10: API Reference

gShell=shell;

//trigger our own onResize to set the initial layout
this.onResize();

}
onResize = function()
{

//ask shell to check app’s min & max size
var bounds = gShell.getBounds();

//if the bounds weren't returned, just use the stage size
if (bounds == null)
{

bounds = {width: Stage.width, height: Stage.height};
}
// layout application items
centered_mc._x = bounds.width / 2;
centered_mc._y = bounds.height / 2;

}

Parameters

None.

Returns

Nothing.

Description

Application event handler; called by the shell when the application window is resized. You write
the onResize() handler to trigger custom layout code for when the window is resized by the user
for example. To ascertain the correct width and height, call Shell.getBounds() on page 349.

It’s a good practice to trigger onResize() manually once in the onActivate() callback so that
any layout scripts will execute at startup. Generally, it’s Central that will be calling your
application’s onResize() method.

Application.onSelectedItem()

Availability

Macromedia Central.

Usage

onSelectedItem=function(data)
{

//process the data received
};

Example

//RECEIVER APPLICATION:

//place the following in the product.xml’s pod and/or application section
<supportedTypes namespace="http://www.w3.org/2001/XMLSchema">

<type>any</type>
Application object 179

</supportedTypes>

//this method will populate an MListBox component
onSelectedItem=function(data)
{

//prepare a List component to populate
myListComponent.removeAll();

for(var i=0;i<data.length;i++)
{

//make sure we treat the data as a selectedItem (not XML)
var thisItem=data[i].asSelectedItem();
myListComponent.addItem(thisItem.name, thisItem.description);

}
};

//SENDER APPLICATION:

//this part of the code shows how an application can prepare data to send
onActivate=function(shell){

//set a variable to reference the Shell or Console
gShell=shell;

send_btn.onPress=function
{

//prepare the data as an array of two selectedItem items
var dataToSend=new Array();

var item1=new SelectedItem("http://www.mysite.com/ns#", "aType");
item1.name="name one";
item1.description="this is the description for item 1";
dataToSend.push(item1);

var item2=new SelectedItem("http://www.mysite.com/ns#", "aType");
item2.name="name two";
item2.description="this is the description for item 2";
dataToSend.push(item2);

//with the items prepared, set the data array and a prompt
gShell.setSelectedItem([item1, item2], "blast two items!");

};
};

Parameters

data An array of instances of the SelectedItem ActionScript structure or an array of XML
objects.

Returns

Nothing.
180 Chapter 10: API Reference

Description

Application and pod event handler; called by the shell when data is arriving in your application.
For this to happen, another application has to first make a selection of a data type that your
application supports. Then a user can manually select your application from the Blast menu or,
when the Auto Blast option is enabled, it triggers immediately. Although there are several steps
involved in defining the supported data types (in the product.xml file) and preparing a selection
to broadcast (in the sending application), onSelectedItem() is where you define how your
application responds when others send data to it using the Blast feature.

The selection is local to each shell window, so an application in one shell window can set the
selected item without destroying the selected item in another shell window.

Note: All pods that can receive Blast data will receive it when the user selects the Edit > Blast > All On
Screen menu option. Only applications that can receive data show up by name and are listed in the
Edit > Blast menu. However, to receive data, pods must still register types that they support in the
product.xml file.

Your application needs to handle the received data as an array full of ActionScript structures or an
array of XML data. The following two functions are built into Central to make it easy to treat the
received data in the form you prefer. (The application that receives the data may not detect in
which form it was sent.)
asXML(); // returns XML object

asSelectedItem(); // returns SelectedItem object

Regardless of whether the data contains structures or XML, you can turn it into the form you
want. Macromedia recommends using the ActionScript structure approach for sending and
receiving; this eliminates any extra overhead from converting to or from XML, which is naturally
more verbose and thus less efficient. You can also use the asXML() function to convert data into
its XML form for communicating with external sources, debugging, and so on. Similarly, you can
use the asSelectedItem() function to convert any old XML into SelectedItem object
instances. Remember, though, to convert any old XML into a SelectedItem object properly; the
schemaType field must be set in order to send XML data directly. For more information on the
Blast feature, see Chapter 7, “Using the Blast Feature,” on page 105.

Application.onUninstall()

Availability

Macromedia Central.

Usage

onUninstall=function()
{
 //execute any final code
}

Example

//this example shows how you can identify your Central customers
//MAIN WEBSITE SWF:
Application object 181

mySO=SharedObject.getLocal("centralData", "/");
if(mySO.data.centralUser==true)
{

message_txt.text="Welcome to my site Central user";
}
else
}

message_txt.text="You need to check out my Central app";
}

//IN YOUR CENTRAL APP:
onActivate=function(shell)
{

gSO=SharedObect.getLocal("centralData", "/");
gSO.data.centralUser=true;

};
onUninstall=function()
{

gSO.data.centralUser=false;
};

Parameters

None.

Returns

Nothing.

Description

Agent and Application event handler; called when the application is being uninstalled from
Central. This call gives the application one last chance to clean up (for example, by clearing local
shared objects) before being uninstalled. Remember that local shared objects written from Central
are stored in the same place as they are when written from your main site. The example shows an
application of this fact. When Central itself is uninstalled, this method is not necessarily called for
all applications.

Application.showPreferences()

Availability

Macromedia Central.

Usage

showPreferences=function()
{

//display preferences because the user requested to
};

Example

showPreferences = function () {
182 Chapter 10: API Reference

//get local shared object and save initial value (in case they cancel)
mySO = SharedObject.getLocal("pref");
var initialVal = mySO.data.pref;

//set up two buttons to set one of two colors
colors=[0xFF0000, 0x0000FF];

backgroundColor.setRGB(colors[initialVal]);
preference_mc._visible = true;

preference_mc.pickColorPref = function (_rb)
{

mySO.data.pref = _rb.value;
backgroundColor.setRGB(colors[_rb.getValue()]);

};

preference_mc.red_rb.data = 0;
preference_mc.red_rb.value = (initialVal == 0);
preference_mc.red_rb.onRelease = preference_mc.pickColorPref;

preference_mc.blue_rb.data = 1;
preference_mc.blue_rb.value = (initialVal == 1);
preference_mc.blue_rb.onRelease = preference_mc.pickColorPref;

//set up cancel and okay buttons
preference_mc.cancel_btn.onRelease = function()
{

mySO.data.pref = initialVal;
backgroundColor.setRGB(colors[initialVal]);
preference_mc._visible = false;

};

preference_mc.okay_btn.onRelease = function()
{

preference_mc._visible = false;
};

};

Parameters

None.

Returns

Nothing.

Description

Application method; called by the shell, when the user selects the menu option to view your
application’s preferences. This is where you write code to display an interface from which the user
can set their preferences. That is, Central is informing you that the user selected the menu item;
it’s up to you to display the preferences.
Application object 183

Central object

ActionScript Class Name mx.central.Central

Note: For backwards compatibility, Central continues to support the Central 1.0 usage syntax for
Central.initAgent, Central.initApplication, and Central.initPod (without using the current class
packaging hierarchy). However, new applications should follow the new usage format
(mx.central.Central), or import the class.

The Central object is simply a class that lets you tie your application, pod, or agent into the
Central environment. You always need to initialize your SWF instances through one of the three
methods listed next. After you call the method, Central triggers the onActivate() callback you
have written inside your SWF instance. From that point forward, you can perform any of the
Central specific features.

Method summary for the Central object

Property summary for the Central object

Event handler summary for the Central object

Central.initAgent()

Availability

Macromedia Central Player.

Usage

mx.central.Central.initAgent(agentSWF, callbackObject)

Parameters

agentSWF An object reference that indicates the agent SWF instance that the AgentManager
should initialize. (Use this to initialize the SWF file from which you call initAgent().)

callbackObject An object reference that indicates the object that the shell should call when
issuing callbacks such as onActivate(). (Use this if you want to define your callbacks inside the
SWF file from which you call initAgent().)

Method Description

Central.initAgent() Initializes agents.

Central.initApplication() Initializes applications.

Central.initPod() Initializes pods.

Property Description

None.

Event handler Description

None.
184 Chapter 10: API Reference

Returns

Nothing.

Description

Shell method; informs Central that the agent is loaded and is ready to receive callbacks.

Central calls the onActivate() method after receiving this initAgent() call. It’s best to declare
all of your event handlers first, and place Central.initAgent(this, this) as the last call in
your agent SWF file.

Central.initApplication()

Availability

Macromedia Central.

Usage

mx.central.Central.initApplication(applicationSWF, callBackObject)

Parameters

applicationSWF An object reference indicating the application SWF instance that the shell
should initialize. (Simply use this to initialize the SWF instance from which you call
initApplication().)

callbackObject An object reference indicating the object that the shell should call when
issuing callbacks such as onActivate(). (Simply use this if you want to define your callbacks
inside the SWF instance from which you call initApplication().)

Returns

Nothing.

Description

Shell method; informs Central that the application is loaded and is ready to receive callbacks.

Central calls onActivate() after receiving this call. A best practice is to declare all of your event
handlers first, and place Central.initApplication(this, this) as the last call in your agent
SWF file.

Central.initPod()

Availability

Macromedia Central.

Usage

mx.central.Central.initPod(podSWF, callbackObject)

Parameters

podSWF An object reference indicating the pod SWF instance that the Console should initialize.
(Simply use this to initialize the SWF instance from which you call initPod().)
Central object 185

callbackObject An object reference indicating the object that the shell should call when
issuing callbacks such as onActivate(). (Simply use this if you want to define your callbacks
inside the SWF instance from which you call initPod().)

Returns

Nothing.

Description

Shell method; informs Central that the pod is loaded and is ready to receive callbacks.

Central calls onActivate() after receiving this call. A best practice is to declare all of your event
handlers first, and place Central.initPod(this, this) as the last call in your agent SWF file.

Console object

ActionScript Class Name mx.central.Console

Pods communicate with the Central environment through the Console object. The Console
manages pods. The Console is to your pods what the shell is to your application, and what the
AgentManager is to your agent. That is, there’s one Console for all the pods (including other
applications’ pods). Your pod receives a reference to the Console as the first parameter in the
onActivate() method. That reference is used whenever you want to access any methods in the
Console object. If you want your pod to communicate directly with your application or agent,
you should use your own implementation of the LocalConnection object or the Central
LCService object developed specifically for this purpose.

The following methods are implemented by the Console, and are called by your pods using a
reference to the Console. (That is, you always replace Console with a variable containing the
reference to the Console received in your onActivate() handler.)

Method summary for the Console object

Method Description

Console.addNotice() Called by a pod to create a new notice.

Console.addPod() Called by a pod to make a pod available in the console.

Console.addToLocalInternetCache() Called by a pod to add a URL to the local Internet
cache.

Console.editLocationDialog() Called by your pod to open the Edit Location dialog box
in the same way as if the user manually selects Edit
Locations from the Location pop-up menu in the
Identity & Location section of the general preferences.
This gives the user the opportunity to make changes to
their location settings.

Console.getAgent() Called by a pod to access various properties of the
agent, such as whether it’s currently running.

Console.getHeight() Called by a pod to ascertain its own height (specified
when it was created).
186 Chapter 10: API Reference

Console.getNotices() Returns an array full of ActionScript objects, each
containing details about the notices created by your
application that are still present.

Console.getPods() Returns an array of ActionScript objects. One for each
pod available to your application (as listed in the
product.xml file or created using addPod()), and each
object contains details about that pod.

Console.getPreferences() Called by a pod to get the user preferences that have
been exposed to this application.

Console.getViewedApplications() Returns an array of ActionScript objects, each
containing details about each shell instance (that is,
separate window) currently running your application.

Console.getViewedPods() Returns an array of ActionScript objects, each
containing details about the pod instances currently
arranged in the Console.

Console.inLocalInternetCache() Called by a pod when it wants to check whether a URL
is in the local Internet cache. (Returns a value of true or
false.)

Console.isConnected() Called by a pod to determine current network status.
(Returns a value of true or false.)

Console.loadApplication() Called by a pod to launch the parent application in a
new window.

Console.newLocationDialog() Called by your pod to launch the New Location dialog
box in the same way as if the user manually selects New
Locations from the Location pop-up menu in the
Identity & Location section of the general preferences.
After the user names the new location, the standard
preference dialog box appears. You also have the
option to tag specific fields as required, although the
user can always cancel the operation.

Console.removeFromLocalInternetCache() Called by a pod to remove a specific URL (such as an
image file) from the local Internet cache.

Console.removeNotice() Called by a pod when it wants to remove a notice using
the notice ID returned at the time the notice was added.

Console.removePod() Called by a pod when it wants to remove a pod using
the pod ID returned when that pod was added. (Unlike
the way a user can close a pod, this makes the pod no
longer accessible.)

Console.startAgent() Called by a pod to start the agent associated with this
application (in the product.xml file).

Method Description
Console object 187

Property summary for the Console object

Event handler summary for the Console object

Console.addNotice()

Availability

Macromedia Central.

Usage

noticeID=shellReference.addNotice(noticeData [,initialData])

Example

// This example function adds a notice based on parameters received
// You could use it as follows:
// var thisID=postStockNotice("MACR", 20, "a description", true);
// myListOfNotices.push(thisID);

postStockNotice=function(ticker, price, ruleDescription, alert)
{

// Creates a new notice object
var noticeData = new Object();
noticeData.name = ticker + " " + price;
noticeData.description = ruleDescription;
noticeData.alert = alert;
noticeData.engageString = "show";
// add noticeData using a reference to gShell (received in onActivate)
var noticeID = gShell.addNotice(noticeData, {ticker: ticker});

// return the ID of this notice for future reference
return noticeID;

}

Console.stopAgent() Called by a pod to stop the agent associated with this
application (in the product.xml file).

Console.viewPod() Called to make the specified pod viewable in the top
Viewer (that is, the uppermost tile) of the console. (This
method requires that the specified pod is first identified
in your product.xml file or created using addPod().)

Property Description

None.

Event handler Description

None.

Method Description
188 Chapter 10: API Reference

Parameters

noticeData An object containing several properties with detailed information about the
notice. The following are the available properties:

initialData Arbitrary application-specific data of any type. This data is received as the third
parameter in an onNoticeEvent callback.

Returns

NoticeID used to refer to this notice in later calls.

Description

AgentManager, Console, or Shell method; triggered by an agent, pod, or application, respectively,
to create a new notice. You need a reference to the appropriate shell (returned as the first
parameter in the onActivate event) to which you trigger this method. The examples use gShell
with the assumption that that variable was set by onActivate. For more information on getting a
reference to the shell, see Agent.onActivate, Application.onActivate, or Pod.onActivate.

It’s good practice to store some identifying information in the optional initialData parameter
when adding a notice. When the user engages the notice, the identifying information is received
in the onNoticeEvent event.

Also, it’s often better to update a notice instead of adding a new one. You update a notice deleting
the old one and replacing it with a new one. This requires you to keep track of the notices as you
create them.

Property Description

id A number that represents the notice ID. This is the same ID returned
when the notice is first created using addNotice(). That is, you don’t set
this property when you create the notice.

name A string to be displayed in the notice’s title bar. If not specified, the default
value of name is:
application name Notice

description Longer string to be displayed in the notice’s body. The default is an empty
string.

timeout A number that specifies the seconds after which the notice should be
automatically dismissed. Set timeout to 0 to create a notice that never
times out.

alert A Boolean value that indicates whether the notice should be brought to
the user’s attention, rather than recorded in the Console.

engageString A short string; displayed on the engage button. If not specified, no
engage button appears.

navigate A Boolean value that indicates whether the shell should start the
appropriate application when the user selects engage.

unread A Boolean value that indicates whether the notice has been viewed by
the user.
Console object 189

Console.addPod()

Availability

Macromedia Central.

Usage

podID=shellReference.addPod(podData)

Example

// Create a pod when your application loads
onActivate = function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
var gShell = shell;

// trigger a homemade function that creates a named pod
var days=["sun","mon","tue","wed","thu","fri","sat"];
var dayName=days[new Date().getDay()];
createPod(dayName+"_pod");

}

// creates and opens a uniquely named pod based on a specific class
createPod = function (theName)
{

// Create a new pod and populate it
var podData = new Object();

// Set the name that displays on the pod itself
podData.name = theName;

// This value must be the same as the <podClass name="name"> tag
podData.className = "calendarClass";

// Set an initial value to keep with the pod
podData.initialData = new Date();

// Add the pod and save a reference to it
var thisPodID = gShell.addPod(podData);

// Use the agentManager reference to view this pod in the console
gShell.viewPod(thisPodID);

};
190 Chapter 10: API Reference

Parameters

podData Pod data object containing several properties. This is the single parameter used any
time you create, destroy, or simply reference a pod. A podData object includes the following
properties:

Property Description

id A numeric unique ID returned when you call addPod(), so that you can
later reference the pod. Do not set this property when adding the pod.

name A string that specifies the name displayed on the pod itself. The name in
the pop-up menu at the top of the Console always matches your
application name. One application can have multiple pods, each with its
own name.

className A string that specifies the name of the class, as defined in the product.xml
file, that refers to a particular implementation of the pod. If your
application uses only one pod, you won’t need a pod className.
However, if you plan to have multiple pod instances based on the same
template, you should define both a podClass and your pod. You need to
define the podClass element separately. For example, suppose that you
describe the podClass tag as follows:
<podClass name="className" src="pod.swf"/>
You can then create instances of this podClass in one of two ways. First,
using the product.xml file, you can add the following pod tag:
<pod name="display name" className="className"/>

The second way to create an instance of this podClass is when creating a
new pod using addPod, as follows:
podData.name="display name";
podData.className="className";

Note: When using ActionScript 2.0, avoid .class; it is a reserved word.
Use className.

height An optional numeric parameter that you may declare to set the height, in
pixels, of the pod instance. The default height is 100. Pod widths are fixed
at 170 pixels.

src A string that specifies the source SWF file. The value is either absolute or
relative. (You can only set this value in the product.xml file’s pod tag or
podClass tag.)

enabled A Boolean value that specifies whether the pod has been added and is
available to the user. This value is only returned when calling getPods();
don’t set it in the object you pass to addPod().

appid A number set by Central to associate a pod with your application.

supportedTypes An array containing strings that identify the data types that this pod can
exchange through the Blast feature. (You can only set these types in the
product.xml file’s supportedTypes tag within the pod or podClass tags.)

initialData An optional property of any data type that you set at the time you trigger
addPod(). You can determine this value later when you reference a pod.
Console object 191

Returns

podID; Number set by Central and representing the unique identifier of the pod instance.

Description

AgentManager, Shell, or Console method; called by an agent, application, or pod, respectively, to
add a pod to the Console. The addPod() method only makes a new pod instance available, and
viewPod() actually makes the pod appear (as though the user physically selected it from the
Console’s pod pop-up menu). You need to use the podID returned from the addPod() method to
trigger the viewPod() method.

The hierarchy of application, pod, and podClass is important. As long as your application has at
least one pod defined in the product.xml file, the user can instantiate multiple pods in the
Console. While the Console only lists applications with pods available, it won’t list your
application more than once. This is true even if you include multiple pod tags (in the product.xml
file) or if you create multiple instances of a pod (either with addPod() or through the
product.xml file). If an application has more than one pod available, the user will see that choice
in a secondary pop-up menu inside the pod itself (next to where the pod’s name appears).

Generally speaking, the user has the ultimate control over how pods are presented. However,
through addPod(), your application can make more pods available, and through viewPod()
added pods can be displayed. There are also methods to determine which pods are available and
which are currently being viewed (getPods() and getViewedPods() respectively). In addition,
with a podID you can use the removePod() method to eliminate a particular pod. However, this
is not the same as a user closing a pod—removePod() makes the pod unavailable. There are lots
of options available, but keep in mind that the goal is to provide the user with intuitive tools that
provide flexibility during development.

Console.addToLocalInternetCache()

Availability

Macromedia Central.

Usage

shellReference.addToLocalInternetCache(url [, bOverwrite, expiration])

Example

// this example adds a JPG to the cache, loads it, then checks if successful
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

var theFile="http://www.mysite.com/images/photo.jpg"
// add it to the cache
gShell.addToLocalInternetCache(theFile);
someClipInstance.loadMovie(theFile);

// check that the disk quota wasn’t exceeded
192 Chapter 10: API Reference

if(gShell.inLocalInternetCache(theFile)==true)
{

// trigger homemade function to explain the image wasn’t downloaded
myAlertFunction("The photo won’t be available when offline");

}

};

Parameters

url String; a fully qualified URL where the file to be cached resides.

bOverwrite Optional parameter; a Boolean value that indicates whether to overwrite
preexisting files of the same name. If the value of bOverwrite is true and the file indicated as the
url value is already in the cache, Central overwrites the file. The default value for bOverwrite is
false.

expiration Optional parameter; either a Date object or a number. This value indicates when
the locally cached file will be considered out of date. If you provide a Date object for this value,
Central considers the file current until the date indicated. If you do not include an expiration
date, the default expiration for any cached file is three days. If you provide a number for this
value, Central considers the file current for that number of days.

Returns

None.

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application, respectively, to
add a URL to the local Internet cache. Subsequent requests for that URL by any application in
Central will retrieve that data from the cache rather than from the web, enabling products to use
data even when the user is offline. To ensure your application loads the URL from the Internet,
first call addToLocalInternetCache() with the bOverwrite parameter set to true.

Note: Central considers file types of Portable Executable formats (DLL, EXE, OCX, and so on)
unsafe and will not add them to the local Internet cache.

Usually, you’ll call the addtoInternetCache() method before loading an image or data file.
Regardless of how long the download takes, you can immediately call a command such as
loadMovie() to load the same file. Adding to the cache simply means that file is saved on the
user’s hard disk. Although the addtoIntenetCache() method does download the file, it
primarily adds URLs to a list from which Central always checks before attempting to download
from the Internet.

Files do not expire when a user is offline. Similarly, once a file is expired it isn’t automatically
removed from the cache. Rather, subsequent attempts to load that URL attempt to access the
Internet unless the user is offline. If the user is online and the inLocalInternetCache() method
is called, the file in question will be removed from the cache if it’s expired. If the user is online and
the addToInternetCache() method is called, the file in question will be overwritten if it’s
expired.
Console object 193

If the value of the bOverwrite parameter is true and that URL is already in the cache, the file
will be overwritten.

The user sets the cache size limit in the Central user preferences. The default size for space shared
by all applications running in Central is 20 MB. All applications share this limited space. When
the cache contents exceeds 20 MB, the user is asked for more space for local Internet files. If
refused, the file is not cached. You can check for success by calling inLocalInternetCache().

When caching files, the files are identified by their URL. However, Central does not distinguish
between separate hosts within the same domain. For example, Central considers the following
two URLs as the same:
http://www.mydomain.com/pub/myFile.swf
http://applications.mydomain.com/pub/myFile.swf

You can cache files from multiple hosts within a domain as long as the paths to the files are
unique across these hosts.

Note: The size limitation for a URL to add to cache is 129 characters (URLs with more than 129
characters will not be added to cache).

Console.editLocationDialog()

Availability

Macromedia Central.

Usage

shellReference.editLocationDialog()

Example

// this example gives the user a button they can use to launch the edit dialog
onActivate=function(shell)
{

// set a variable to reference the Shell or Console
gShell=shell;

// set up the button
edit_btn.onPress=function()
{

gShell.editLocationDialog();
}

}

Parameters

None.

Returns

Nothing.
194 Chapter 10: API Reference

Description

Shell or Console method; called by your application or pod to open the Edit Location dialog box
from the user’s preferences, so that they may edit their current list of locations. This action is the
same as if the user selects Edit Locations from the Location pop-up menu in the Identity &
Location section of the general preferences. The only difference here is that the user never sees the
rest of their preferences if they cancel the operation. Using the editLocationDialog() method
is simply a way to help access this setting by way of your application.

Console.getAgent()

Availability

Macromedia Central.

Usage

agentData=shellReference.getAgent()

Example

// this example lets the user start an agent if it’s not already started
onActivate=function(shell)
{

// set a variable to reference the Shell or Console
gShell=shell;

// set up a button to start agent
turnOnAgent_btn.onPress=function()
{

// use getAgent() to find the started property
if(gShell.getAgent().started==true)
{

prompt_txt.text="Already running";
}
else
{

// attempt to start agent and report the results
var result=gShell.startAgent();
prompt_txt.text="Result: "+(result==true)?"success":"failure";

}
}

};

Parameters

None.
Console object 195

Returns

agentData Object; contains the following list of properties.

Console or Shell method; called by your pod or application to ascertain various properties of the
agent. Calling getAgent() returns an object with several properties. Considering that most of
these properties are hard-wired in your product.xml file, the most useful properties are started
and enabled.

Console.getHeight()

Availability

Macromedia Central.

Usage

myCurrentHeight=shellReference.getHeight()

Example

// this example positions a graphic at the bottom edge of the pod
onActivate=function(shell)
{
// set a variable to reference the AgentManager, Shell, or Console

gShell=shell;

var height=gShell.getHeight();
bottomBorder_mc._y=height;

};

Parameters

None.

Returns

An integer that represents the pod height in pixels. The default pod height is 100 pixels.

Element Description

id A unique numeric ID for the agent. This is the same value received as the
second parameter when Central calls the Agent.onActivate() event
handler.

name A string that specifies the name of the agent, which is the same as the
name declared for this agent in the product.xml file.

src A string that specifies the fully qualified location of the SWF file
implementing the agent, which is the same as the location declared for
this agent in the product.xml file.

started A Boolean value that indicates whether this agent has been started (that
is, whether it’s currently running).
196 Chapter 10: API Reference

Description

Console method; called by a pod to determine its height as specified when it was created. When
using both the product.xml file and the addPod() method, there are options to specify a pod’s
height.

Console.getNotices()

Availability

Macromedia Central.

Usage

arrayOfStructures=shellReference.getNotices()

Example

// This example creates notice when the user starts or stops your app.
// It uses getNotices() so that it can remove any matching notices.
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;
makeNonDuplicatedNotice("STARTUP");

};

onDeactivate=function()
{

makeNonDuplicatedNotice("SHUTDOWN");
};

makeNonDuplicatedNotice=function(theType){
// first see if there are any existing notices that match this type
var currentNotices=gShell.getNotices();
for(var i=0;i<currentNotices.length;i++)
{

var thisNotice=currentNotices[i];
if(thisNotice.appData==theType)
{

gShell.removeNotice(thisNotice.id);
break;

}
}

// make a new notice
var now=new Date();
var noticeData = new Object();
var initialData = theType;

// make part unique
if(theType=="STARTUP")
{

noticeData.name = "Start up time";
noticeData.description = "You started this app at "+now.toString();

}

Console object 197

else
{

noticeData.name = "Shut down time";
noticeData.description = "You closed this app at "+now.toString();

}

// set the rest of the properties
noticeData.alert = false;
noticeData.navigate = false;
noticeData.engageString = null;
noticeData.timeout = 0;

gShell.addNotice(noticeData, initialData);
};

Parameters

None.

Returns

An array of structures, each with the following properties:

noticeData An object containing several properties with detailed information about the
notice. The following are the available properties:

Property Description

creationTime Date object containing the exact time the notice was created.

appID A unique numeric ID for the application that created the notice. This is the
same value received by the onActivate() event.

id A unique numeric ID for this notice. This is the same value returned when
you call addNotice().

initialData Can be any data type, passed as the second parameter when you issue
addNotice(). For details on how this lets you pack a notice with custom
data, see addNotice().

noticeData An object that contains general information about the notice, as
described next.

Property Description

id A number that represents the notice ID. This is the same ID returned
when the notice is first created using addNotice(). That is, you don’t set
this property when you create the notice.

name A string to be displayed in the notice’s title bar. If not specified, the default
value of name is:
application name Notice

description Longer string to be displayed in the notice’s body. The default is an empty
string.
198 Chapter 10: API Reference

AgentManager, Console, or Shell method; called by an agent, pod, or application, respectively, to
get the currently active notices that your application created. The getNotices() method is one
of many methods that help you manage the notices you produce. You don’t want to inundate your
users with useless notices.

When you invoke the addNotice() method, an ID number is returned (that you can use when
call removeNotice()). When a notice is dismissed, the onNoticeEvent() callback triggers with
complete details. Finally, you can always find complete details regarding the existing notices any
time by using the getNotices() method.

Console.getPods()

Availability

Macromedia Central.

Usage

podData=shellReference.getPods()

Example

// displays a list of all available pods and adds an option to remove
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;
refreshListofAllPods();

myButton.onPress=function(){
gShell.removePod(myListComponent.getSelectedItem().data);
refreshListofAllPods();

};
};

timeout A number that specifies the seconds after which the notice should be
automatically dismissed. Set timeout to 0 to create a notice that never
times out.

alert A Boolean value that indicates whether the notice should be brought to
the user’s attention, rather than recorded in the Console.

engageString A short string; displayed on the engage button. If not specified, no
engage button appears.

navigate A Boolean value that indicates whether the shell should start the
appropriate application when the user selects engage.

unread A Boolean value that indicates whether the notice has been viewed by
the user.

Property Description
Console object 199

refreshListofAllPods=function()
{

// clear the list component to be populated
myListComponent.removeAll();

// get an array of all the pods
var allPods=gShell.getPods();

// loop through the pods extracting their names and IDs
for (var i=0; i<allPods.length; i++)
{

var thisPod=allPods[i];
// add this pod's name and id to an MListBox component instance
myListComponent.addItem(thisPod.name, thisPod.id);

}
};

For additional examples of this method, see AgentManager.removePod().

Parameters

None.

Returns

An array of podData structures for all pods available to this application. The values for a podData
structure are set in the product.xml file or by a script calling addPod() or, in the case of appId
and id, by Central itself. For reference, the entire podData object documentation is shown below.

podData Pod data object containing several properties. This is the single parameter used any
time you create, destroy, or simply reference a pod. A podData object includes the following
properties:

Property Description

id A numeric unique ID returned when you call addPod(), so that you can
later reference the pod. Do not set this property when adding the pod.

name A string that specifies the name displayed on the pod itself. The name in
the pop-up menu at the top of the Console always matches your
application name. One application can have multiple pods, each with its
own name.
200 Chapter 10: API Reference

AgentManager, Console, or Shell method; gets the list of all pods available to this application.
This includes pods listed in the product.xml file as well as any created by the addPod() method.
To get a list of only those pods currently arranged in the Console, use the getViewedPods()
method instead.

Realize that your application will only be listed once in the Console’s pod selection pop-up menu
(provided your application has at least one pod). For an application with more than one pod, the
user will see a secondary pop-up menu inside the pod (adjacent to the pod’s name). The
getPods() method returns an array of all the pods that will appear in that secondary pop-up
menu.

className A string that specifies the name of the class, as defined in the product.xml
file, that refers to a particular implementation of the pod. If your
application uses only one pod, you won’t need a pod className.
However, if you plan to have multiple pod instances based on the same
template, you should define both a podClass and your pod. You need to
define the podClass element separately. For example, suppose that you
describe the podClass tag as follows:
<podClass name="className" src="pod.swf"/>
You can then create instances of this podClass in one of two ways. First,
using the product.xml file, you can add the following pod tag:
<pod name="display name" className="className"/>

The second way to create an instance of this podClass is when creating a
new pod using addPod, as follows:
podData.name="display name";
podData.className="className";

Note: When using ActionScript 2.0, avoid .class; it is a reserved word.
Use className.

height An optional numeric parameter that you may declare to set the height, in
pixels, of the pod instance. The default height is 100. Pod widths are fixed
at 170 pixels.

src A string that specifies the source SWF file. The value is either absolute or
relative. (You can only set this value in the product.xml file’s pod tag or
podClass tag.)

enabled A Boolean value that specifies whether the pod has been added and is
available to the user. This value is only returned when calling getPods();
don’t set it in the object you pass to addPod().

appid A number set by Central to associate a pod with your application.

supportedTypes An array containing strings that identify the data types that this pod can
exchange through the Blast feature. (You can only set these types in the
product.xml file’s supportedTypes tag within the pod or podClass tags.)

initialData An optional property of any data type that you set at the time you trigger
addPod(). You can determine this value later when you reference a pod.

Property Description
Console object 201

For more information see getViewedPods(), addPod(), and viewPod().

Console.getPreferences()

Availability

Macromedia Central.

Usage

prefObject=ref.getPreferences()

Example

// Displays as customized a message as possible at startup
onActivate=function(shell)
{

// set a variable to reference the Shell or Console
gShell=shell;

// get all the preferences
var all=gShell.getPreferences();

// prepare a field to populate
message_txt.text="";

// encourage them to enable background tasks, just in case
if(all.agentsEnabled==false)
{

message_txt.text+="Please enable background tasks."+newline;
}

// if we can’t find first or last name, use a generic message
if(all.userData.firstName==null || all.userData.lastName==null)
{

message_txt.text+="Welcome!"+newline;
}
else
{

message_txt.text+="Welcome "+all.userData.firstName+" "
+all.userData.lastName+"."+newline;

}

// if the locations value isn’t null
if(all.locations!=null)
{

// store the location profile from the appropriate index
var here=all.locations[all.currentLocationIndex];

// fashion a personalized message to display
message_txt.text+="You’re probably glad to be "

+here.label+ " in beautiful "+here.city+".";
}

};
202 Chapter 10: API Reference

Returns

prefObject Object containing details from the user’s global preference settings. Depending on
how much access the user has given to your application, you can find the values for some or all of
the following properties.

Description

AgentManager, Console, or Shell method; called by the pod or application to get the general
Central preferences the user has exposed to your application. The value for the agentsEnabled
property matches the user’s setting for whether background tasks are allowed (set in the Advanced
Preferences dialog box). This value is always available. In fact, you’ll also see values for the
userData, locations, and currentLocationIndex properties (based on settings under the
Identity & Location Preferences dialog box). However, the values are all null by default and
won’t be available until the user has specifically allowed your application access to this data. It’s
easiest to visualize these properties and subproperties while viewing the Identity & Location
Preferences dialog box.

Console.getViewedApplications()

Availability

Macromedia Central.

Usage

arrayOfApplicationRecs=shellReference.getViewedApplications()

Example

// this example stops users from launching multiple instances of your app
function onActivate(shell)
{

Element Description

userData A structure with three properties:
{firstName: xxx,
lastName: xxx,
email: xxx}

locations An array of structures, each with the following properties:
{label: xxx,
address1: xxx,
address2: xxx,
city: xxx,
state: xxx,
zipcode: xxx,
phone: xxx,
country: xxx,
latitude: xxx,
longitude: xxx,}

currentLocationIndex An index indicating the currently selected location (within the locations
array).

agentsEnabled A Boolean value that indicates whether agents are enabled.
Console object 203

gShell=shell;

var activeApps = gShell.getViewedApplications();

if(activeApps.length>1)
{

myAlertDialog("You're already running this app in another window");
}

};

Parameters

None.

Returns

An array of applicationRecs structures that contain details about each instance of your
application. Each applicationRec structure has the following two properties:

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application to get the list of
all the shell instances running your application. Naturally, this method only returns information
about your applications. You can use the getViewedApplications() method to prevent users
from launching multiple instances of your application (as the example shows). Also, if you
develop a multi-window application, you can use the IDs gathered to set up unique
LocalConnection channels (although it’s often simpler to use the LCService object).

Console.getViewedPods()

Availability

Macromedia Central.

Usage

arrayOfPodStructures=shellReference.getViewedPods()

Example

// displays a detailed list of currently viewed pods
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// trigger our refresh function
refreshListOfActivePods();

Property Description

appID Number indicating the unique ID for your application. (All instances of
your application share this number.)

shellID Number indicating the unique ID for the particular shell running the
application. (You can think of this as an ID for the Central shell.)
204 Chapter 10: API Reference

// give a button the ability to trigger our refresh function
myButton.onPress=function()
{

refreshListOfActivePods();
};

};
refreshListOfActivePods=function()
{

// clear the list component to be populated
myListComponent.removeAll();

// get an array of the currently viewed pods

var activePods=gShell.getViewedPods();

// loop through the pods extracting some data for each one
for (var i=0; i<activePods.length; i++)
{

var thisPod=activePods[i];
var thisLabel=thisPod.podData.name+

 " (slot: "+thisPod.position+") "+
 ((thisPod.collapsed)?"is not open":"is open");

myListComponent.addItem(thisLabel);
}

};

Parameters

None.

Returns

An array of structures for each pod currently visible. The structures have the following properties:

Property Description

viewerID Number indicating a unique ID for the pod instance. This is the same
number received as the third parameter in the pod’s onActivate()
handler.

position Number indicating the current ordinal position of the pod (not the pixel
location). Counting from the top, the uppermost pod is in position 0, then
position 1, and so on.

collapsed A Boolean value that indicates whether the pod is in the collapsed state.

podData A Pod data object as specified in the product.xml file or defined when you
call addPod(). For details on the properties contained in a podData object,
see getPods().
Console object 205

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application to get the list of
this application’s currently viewed pods in the console. These are simply pods positioned in the
Console (regardless of whether the console happens to be open). To get a list of all initialized pods
initialized (that is, pods available to the user), regardless of whether they’ve been loaded in the
Console, see AgentManager.getPods() on page 154.

To determine whether the console is open, use AgentManager.isConsoleOpen().

The getViewedPods() method only returns pods for your application.

While you can use the removePod() method (given the id property inside the podData property)
this won’t just close the pod but will actually remove it from the pods available to the user. There
is no “close pod” method.

Console.inLocalInternetCache()

Availability

Macromedia Central.

Usage

myBoolean=shellReference.inLocalInternetCache(url);

Example

// this example function loads images with the ultimate user control
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// trigger our homemade function
loadImage("background.jpg");

}

loadImage=function(theImage, override)
{

var imagePath="http://www.mysite.com/images/"+theImage;

// if the image is already present (or they’re overriding)
if(gShell.inLocalInternetCache(imagePath)==true || override==true)
{

//add the image and load it into a clip instance
error_txt.text="Loading "+theImage;
gShell.addToLocalInternetCache(imagePath);
clipInstance.loadMovie(imagePath);

}
else
{

// if they’re connected
if(gShell.isConnected()==true)
206 Chapter 10: API Reference

{
// get their approval by making the button set override to true
error_txt.text="Do you want to download "+theImage+"?";
okay_btn.onPress=function(){ loadImage(theImage,true) };

}
else
{

// if they’re not connected just let them try again
error_txt.text="Connect then press the okay button";
okay_btn.onPress=function(){ loadImage(theImage)};

}
}

};

Parameters

url A string; fully qualified path that provides the location of the file to be added to the local
Internet cache.

Returns

A Boolean value; true if the URL is in the local Internet cache, false if not found.

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application to check if a
URL is in the local Internet cache. There are several strategies that might require this method.
Before requiring a user to endure a long download, you can first check if the file is available
locally, in which case, you get the user’s approval first. Also, if the user has indicated that they’re
not online and the file is not available locally, you can tell them they need to go online first.
Finally, the inLocalInternetCache() method provides an indirect way to confirm that attempts
to add files to the local Internet cache are successful, as described in the following best practice.

Note: Central considers file types of Portable Executable formats (DLL, EXE, OCX, and so on)
unsafe and will not add them to the local Internet cache.

It’s a good idea to always confirm the success of any addToLocalInternetCache() call by
immediately issuing the inLocalInternetCache() method with an appropriate follow-up action
if the method returns a value of false. This is because if the user’s 20 MB cache is exceeded and
they don’t allow an increase, then addToLocalInternetCache() effectively fails.

When caching files, the files are identified by their URL. However, Central does not distinguish
between separate hosts within the same domain. For example, Central considers the following
two URLs as the same:
http://www.mydomain.com/pub/myFile.swf
http://applications.mydomain.com/pub/myFile.swf

You can cache files from multiple hosts within a domain as long as the paths to the files are
unique across these hosts.
Console object 207

Console.isConnected()

Availability

Macromedia Central.

Usage

myBoolean=shellReference.isConnected()

Example

// this example checks the connection state at startup
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// take current state and trigger onNetworkChange (where our code resides)
this.onNetworkChange(gShell.isConnected());

};

onNetworkChange=function(connected)
{

// save the connection state in a variable
gOnline=connected;

// display a visual online indicator
onlineGraphic_mc._visible=gOnline;

};

Parameters

None.

Returns

A Boolean value: true if the user is connected, false if offline.

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application to determine
current network status. You should consolidate all your code related to connectivity inside the
onNetworkChange() handler. Although Central triggers onNetworkChange() automatically, it
only does so when the connection status changes. Therefore, you need to use isConnected()
initially to bring your application in sync. The example shows how an application can trigger its
own onNetworkChange() handler (though usually Central does this). This way, all the code is
consolidated in one place. There’s no reason to repeatedly check isConnected() from multiple
places in your code.
208 Chapter 10: API Reference

Console.loadApplication()

Availability

Macromedia Central.

Usage

shellReference.loadApplication([initialData]);

Example

//this example provides a button in the pod to launch the main app
onActivate=function(shell)
{

//set a variable to reference the Console
gShell=shell;

//set up a button to open our application
myToss_btn.onClick = function()
{

gShell.loadApplication("from_pod");
};

};

Parameters

initialData Any data type; optional parameter providing initial data to be passed into the
application when loading. (Received in the application’s onSelectedItem() callback.)

Returns

Nothing.

Description

Console event handler; your pod can call it to load its parent application. Additionally, you can
pass data using the optional parameter. You can use this parameter to pass data to your
application. If the application is not open, Central opens it, subject to normal application
opening rules. If the application is already open, it does not open a second window, but gets an
onSelecteditem() call.

The optional parameter is also useful when attempting to send data from a pod using the Blast
feature. However, because the Console doesn’t have a Blast menu, you may want to send any data
that is to be sent using the Blast feature by way of loadApplication(), and have code in the
application’s onActivate() callback proceed to fashion the selectedItem data.

Macromedia recommends that you launch applications only when the user deliberately selects an
option to do so. This is similar to the recommendation against automatically viewing pods.
Additionally, when the loadApplication() will be triggering a Blast operation, you should use
the standard "Send" curved arrow icon (available in the Central Components). The important
thing is to give the user control.

For more information on the Blast feature, see Chapter 7, “Using the Blast Feature,” on page 105.
Console object 209

Console.newLocationDialog()

Availability

Macromedia Central.

Usage

shellReference.newLocationDialog([reqFields])

Example

// this prompts the user to create a new location with city and state required
onActivate=function(shell)
{

// set a variable to reference the Shell or Console
gShell=shell;

newLocation_btn.onPress=function()
{

gShell.newLocationDialog(["locCity", "locState"]);
}

};

Parameters

reqFields An array that contains strings for the fields that you want to designate as required.
The following table lists valid field names. It’s easiest to visualize these field names while viewing
the Identity & Location Preferences dialog box. (You can pass the literal string "noDialog" to
open the Identity & Location Preferences dialog box without creating a new location entry or
designating any required fields.)

Returns

Nothing.

Field Description

"firstName" User’s first name

"lastName" User’s last name

"email" User’s e-mail address

"locAddress1" The first line of the user’s address

"locAddress2" The second line of the user’s address

"locCity" User’s city

"locState" User’s state

"locZip" User’s zip code

"locPhone" User’s phone number

"locLat" User’s latitude

"locLong" User’s longitude
210 Chapter 10: API Reference

Description

Shell or Console method; called by your application or pod to open the New Location dialog box
from the user’s preferences, so that they may create a new location and then edit the values. This is
the same as if the user selects New Location from the Location pop-up menu in the Identity &
Location section of the general preferences. The only difference here is that the user never sees the
rest of their preferences if they cancel the operation.

To make no fields required, don’t pass anything. To make the Identity & Location Preferences
dialog box appear without creating a new location entry or designating any required fields, pass
the literal string "noDialog".

Additionally, the newLocationDialog() method lets you designate that any or all fields are
required. The user sees a small page curl on the required fields, and red lines around any fields
they attempt to leave blank. (Be sure to pass an array containing strings that match the values
listed in the table.)

Console.removeFromLocalInternetCache()

Availability

Macromedia Central.

Usage

shellReference.removeFromLocalInternetCache(URL)

Example

// this example attempts to free up space in the user’s cache when appropriate
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// add a new image to the local cache and load it into a clip
var imagePath="http://www.mysite.com/images/";
var theImage="photo.jpg";
gShell.addToLocalInternetCache(imagePath+theImage);
clipInstance.loadMovie(imagePath+theImage);

// if the new image isn’t present that means the cache is full
if(gShell.inLocalInternetCache(imagePath+theImage)==false)
{

// take a list of previously loaded images (could be dynamic)
myImageList=["big1.jpg", "big2.jpg", "big3.jpg"];

// and remove each one
for(var i=0;i<myImageList.length;i++)
{

gShell.removeFromLocalInternetCache(imagePath+myImageList[i]);
}

}
};
Console object 211

Parameters

url Fully qualified location of the file to be removed from the local Internet cache.

Returns

Nothing.

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application, respectively, to
remove a URL from the local Internet cache. Subsequent requests for that URL by any
application in Central will retrieve that data from the web rather than from the cache.

The file in question must be in the local Internet cache for this method to work. That means that
previously an application must have issued addToLocalInternetCache(). Another way to
remove a file from the local Internet cache is by setting an expiration date when invoking
addToLocalInternetCache(). Finally, the Shell.addToLocalInternetCache() method also
has an overwrite parameter which effectively removes a file by replacing it. For more information,
see addToLocalInternetCache().

Console.removeNotice()

Availability

Macromedia Central.

Usage

myBoolean=shellReference.removeNotice(noticeID)

Example

// this example creates 3 notices and removes all 3 when any one is dismissed
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// create an array to store IDs for the notices we create
gPostedNotes=new Array();
//create a notice, set its name, and add it
var noticeData = new Object();
noticeData.engageString="Remove";
noticeData.name = "One";
gPostedNotes.push(gShell.addNotice(noticeData));
noticeData.name = "Two";
gPostedNotes.push(gShell.addNotice(noticeData))
noticeData.name = "Three";
gPostedNotes.push(gShell.addNotice(noticeData))

};

onNoticeEvent=function(event, noticeData, initialData)
{

// while gPostedNotes still has items remaining
212 Chapter 10: API Reference

while(gPostedNotes.length>0)
{

// pop one off and remove it
var thisNotice=gPostedNotes.pop();
gShell.removeNotice(thisNotice);

}
};

Parameters

noticeID A number identifying the specific notice you want removed. You can use the number
returned when you create a notice using the addNotice() method. You can also use an id
property of any object within the array of notices objects returned from the getNotices()
method.

Returns

A Boolean value: true if the notice was removed, otherwise false.

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application, respectively, to
remove a notice. You can only remove notices that your application created.

The most direct way to track IDs is to store them as you use addNotices(). However, this can be
difficult because users can dismiss notices (in which case you’ll have to trap the onNoticeEvent()
event) and they might leave the notices untouched when they quit Central (in which case you’ll
have to save a LocalShared object). Probably the easiest tracking method is to include initial data
in the second parameter of your addNotice() call. Use getNotices() and then step through
each item returned looking for a matching appData property.

A best practice is to minimize the total number of notices by first deleting old notices and then
replacing them with new ones containing up-to-date information. For an example of this practice,
see Shell.getNotices().

Console.removePod()

Availability

Macromedia Central.

Usage

shellReference.removePod(id)

Example

// product.xml excerpt from within the <application> tag:
<podclass name="myRegularPod" src="pod.swf"/>
<podclass name="mySpecialPod" src="specialpod.swf"/>

<pod name="myDefaultPod" className="myRegularPod" />

// this example temporarily exposes a special pod for the user to open
onActivate=function(shell)
Console object 213

{
// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// give the user the opportunity to access the special pod class
gCounter=0;
my_btn.onPress=function()
{

gCounter++;
if(gCounter==3)
{

// add a new pod
var podData=new Object();
podData.name="special #3";
podData.className="mySpecialPod";
gSpecialPodID=gShell.addPod(podData);

}
if(gCounter==4)
{

// remove the special pod
gShell.removePod(gSpecialPodID);

}
}

};

Parameters

id A number returned when calling the addPod() method to create a pod. You can also use an
id property of any object within the array of objects returned to the getPods() method.

Returns

Nothing.

Description

AgentManager, Console, or Shell object method; called by an agent, pod, or application,
respectively, to remove a pod. Although this method removes from view any pods currently
arranged in the Console, it works differently from the way the user manually closes a pod. In the
case of removePod(), you aren’t removing an individual pod SWF instance, but rather removing
a pod instance once associated with your application. Naturally, if a matching pod is present in
the Console, it must be closed, but using removePod() means the user will no longer be able to
add that pod instance manually. There is no “close pod” method.

For more information about pods and pod classes see the entry for Console.addPod(). For more
information about the difference between application pods and currently viewed pods, see the
entries for Console.getPods() and Console.getViewedPods(), respectively.

Central automatically removes all pods associated with an application when a user uninstalls the
application.
214 Chapter 10: API Reference

Console.startAgent()

Availability

Macromedia Central.

Usage

shellReference.startAgent()

Example

// this example stops and starts the agent as connection status changes
onActivate=function(shell)
{

// set a variable to reference the Shell or Console
gShell=shell;

};

onNetworkChange=function(connected)
{

if(connected==false)
{

gShell.stopAgent();
}
else
{

gShell.startAgent();
}

};

Parameters

None.

Returns

A Boolean value: true if the agent was started, false if offline.

Description

Console or Shell method; called by a pod or an application to start the agent associated with your
application as defined in the product.xml file. The product.xml file also lets you set your agent to
start automatically every time Central starts. Simply set the started attribute to true inside the
agent tag, as the following code shows:

<agent name="myAgent" src="agent.swf" started="true"/>

Most often, you use the startAgent() method after you issue a stopAgent() call.

Console.stopAgent()

Availability

Macromedia Central.
Console object 215

Usage

myBoolean=shellReference.stopAgent()

Example

// this example stops and starts the agent as connection status changes
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

};

onNetworkChange=function(connected)
{

if(connected==false)
{

gShell.stopAgent();
}
else
{

// this only works from an application or pod (not agent)
gShell.startAgent();

}
};

Parameters

None.

Returns

A Boolean value: true if the agent was successfully stopped, otherwise false.

Description

AgentManager, Console, or Shell method; called by an agent itself, a pod, or an application to
stop the agent SWF file (listed in the product.xml file). After it stops, the agent won’t start again
until you call startAgent() from an application or pod instance. In fact, agents do not start
automatically unless the product.xml file’s agent tag includes the attribute started="true".

Note: Your application can only have one agent.

A best practice is to keep as much code as possible in your agent. In such a case, the stopAgent()
method has questionable value. However, if your agent is primarily executing background tasks
using setInterval(), it might be easiest to first clear all the intervals and then simply call
stopAgent(). Additionally, if you design an application to use the agent only temporarily, then it
makes sense to use stopAgent() (and startAgent()).

Note: You don’t need to remove agents when the user uninstalls your application; Central does this
for you.
216 Chapter 10: API Reference

Console.viewPod()

Availability

Macromedia Central.

Usage

shellReference.viewPod(podID [, bForce])

Example

// This example adds a pod only after the user first runs the app.
// It requires you to define a PodClass named "post_install" in the product.xml

onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// check to see if the pod is installed
var foundID=null;
var allPods=gShell.getPods();
for(var i=0;i<allPods.length;i++)
{

if(allPods[i].className=="post_install")
{

foundID=allPods[i].id;
gPodID=foundID;
break;

}
}

// create it if it wasn’t found
if(foundID==null)
{

var podData=new Object();
podData.name="Post Install Pod";
podData.className="post_install";
gPodID=gShell.addPod(podData);

}

// give the user a way to view the pod
podOpen_btn.onPress=function()
{

// should first use getViewedPods to avoid multiple views of this pod
//as is, this will view the pod added or found above
gShell.viewPod(gPodID);

};
};

Parameters

podID The number returned when calling addPod() to create a pod. You can also use an id
property of any object within the array of objects returned to the getPods() method.
Console object 217

bForce Optional parameter that forces the creation of a new pod viewer in the Console. The
bforce parameter is a Boolean value. If true (or omitted), viewPod() forces the creation of a
new pod viewer in the Console. If false, a new pod viewer is created only if the pod referred to
by podID is not already viewed in the Console (so no duplicate pods appear).

Returns

Nothing.

Description

AgentManager, Console, or Shell method; called by an agent, application, or pod, respectively, to
open a specific pod instance so that it becomes visible in the top slot of the Console. All of the
other visible pods are moved down in the console.

To call viewPod() you need a podID parameter. This means that you either must have used a
script to call addPod(), which returns an id, or used the getPods() method to get an array full
of structures (each one including an id). Using the getPods() method might seem to be
haphazard if your application has more than one pod, as you wouldn’t know which item in the
array was for which pod. However, the data in the array returned from getPods() includes other
details, including any initial data that you can specify in the product.xml file. It is probably most
intuitive to simply use viewPod() immediately after the creation of a pod by using the addPod()
method, as the example shows.

A best practice is to only call the viewPod() method in response to a direct user action. The user
should choose how to best populate the Console.

DataProviderClass object

ActionScript Class Name mx.central.data.DataProviderClass

The DataProviderClass object provides a robust and generalized interface for creating and
managing a wide variety and number of data items. This object contains a detailed event model
that broadcasts granular modelChanged events to any listening objects.

All list-based components (DataGrid, ComboBox, ListBox, and others) implement one or more
DataProviderClass objects to manage their ordered item lists.

A DataProviderClass object can and should be used to work efficiently with ordered data sets,
even if the set will never be presented to a component.

You should become familiar with the LCDataProvider object, because the LCDataProvider object
is nearly identical to the DataProviderClass object. LCDataProvider provides access to the
synchronous Local Connection Object.

Extending the DataProviderClass object

You can create a DataProviderClass-compliant object by implementing all the methods and
properties described in this document. A List-based component, such as the ListBox component,
could then use that object as a data provider. To extend the DataProviderClass object, be sure to
call its init() function when the subobject is instantiated.
218 Chapter 10: API Reference

The following example shows how you can extend the DataProviderClass object:
SomeNewClassName = function() {

this.init();
}
SomeNewClassName.prototype = new DataProviderClass();

SomeNewobjectsName.prototype.init = function() {
super.init();

}

SomeNewClass.prototype.updateView = function(view, eventObj) {
if(view.modelChanged != undefined) {

view.modelChanged(eventObj);
} else {

view.onSomeEventTrigger(eventObj);
}

}

this.onSomeEventTrigger = function(eventObj) {
trace(">> ON SOME EVENT TRIGGER CALLED");
for(var i in eventObj) {

trace(i + " : " + eventObj[i] + " type : " + typeof(eventObj[i]);
}

}

var myNewClass = new SomeNewClass();

myNewClass.addItem({label:"someLabel1", data:"someData1",
sortable:"SOMEDATA1"});

myNewClass.addItem({label:"someLabel2", data:"someData2",
sortable:"SOMEDATA2"});

myNewClass.addItem({label:"someLabel3", data:"someData3",
sortable:"SOMEDATA3"});

myNewClass.sortItemsBy("sortable", "DESC");

myNewClass.addListener(this);
this.someListBox.dataProvider = myNewClass;

Method summary for the DataProviderClass object

The following table summarizes the methods for the DataProviderClass object:

Method Description

DataProviderClass.addItem() Adds a single item, item, to the end of the list of
items.

DataProviderClass.addItemAt() Adds a single item at a specific index in the list
of items.

DataProviderClass.addItems() Adds a set of item objects to the end of the list
of items. This set can be either an array of
objects (ordered) or an object of objects
(unordered).
DataProviderClass object 219

DataProviderClass.addItemsAt() Adds a set of item objects to a specific index in
the list of items.

DataProviderClass.addListener() Passes a reference to an object that is added to
the DataProviderClass._listeners array, and
determines whether to call the object’s
modelChanged event.

DataProviderClass.getAllItems() Returns the entire items array. This method
returns only a reference to the actual
dataProviderInstance.items array.

DataProviderClass.getIndexByKey() Returns the index of the first item (starting from
the beginning of the list) whose property
indicated by key matches the value passed in.

DataProviderClass.getIndicesByKey() Returns an array of indexes for items whose
property specified by key matches value.

DataProviderClass.getItemAt() Returns the item at index.

DataProviderClass.getItemByKey() Returns the first item object found whose
property specified in key matches value.

DataProviderClass.getItemID() Returns the value of the item._ID_ property
found at index.

DataProviderClass.getItemsByKey() Returns an array of objects whose property
specified in key matches value.

DataProviderClass.getLength() Returns the total number of items in the data
provider.

DataProviderClass.getSortState() Returns a sort object with two string properties:
sortField and order.

DataProviderClass listener.modelChanged() Broadcasts when the data provider changes

DataProviderClass.removeAll() Removes all items in the data provider.

DataProviderClass.removeItemAt() Removes the item at index and returns it.

DataProviderClass.removeListener() Searches the _listeners array for the reference
passed in, and removes it if found.

DataProviderClass.replaceAllItems() Deletes and replaces all of the items in the
DataProviderClass instance.

DataProviderClass.replaceItemAt() Overwrites an item at the specified index with a
new item object.

DataProviderClass.setItemByKey() Overwrites an existing item object using the key
of any existing item property.

DataProviderClass.sort() Sorts the items using a custom function, similar
to Array.sort, but lets you pass in additional
arguments to persist and retrieve user-driven
sort selections.

Method Description
220 Chapter 10: API Reference

Events for the DataProviderClass object

By extending the DataProviderClass object and overriding the updateView method, you can
make the data provider broadcast to any method you define. All components listen for
modelChanged events, so you must broadcast to the modelChanged event, or your
implementation will not work with existing components. To broadcast to any method, pass in an
eventObject as described next for the modelChanged event:

Constructor for the DataProviderClass object

If your application is working with any type of data, the data can usually be stored in a
DataProviderClass object. Data stored in a DataProviderClass object is much easier to access,
transmit, and manipulate.

However, if your application has an extremely large data set, the performance of the
DataProviderClass object might not be optimal, especially if you use custom sort functions. If the
order of the data set is not important, you might want to store the data in an unordered, keyed list
instead.

The following example shows how to instantiate a data provider for a list box:
// For a list box
var myDp = new mx.central.data.DataProviderClass();
myDp.addItem({label:"someLabel1", data:"someData1"});
myDp.addItem({label:"someLabel2", data:"someData2"});
myDp.addItem({label:"someLabel3", data:"someData3"});
this.someListBox_mc.dataProvider = myDp;

DataProviderClass.sortItemsBy() Sorts the items in the specified order, using the
built-in Array.sortOn method with the item
property specified in key.

DataProviderClass.updateItem() Overwrites an existing item object with a new
item object.

DataProviderClass.updateItemByIndex() Overwrites an existing item object at index with
a new item object.

DataProviderClass.updateView() Broadcasts events, other than the
modelChanged event, for any objects that
extend the DataProviderClass object. This
method is called for each _listener that is
added when the DataProviderClass instance
triggers an event.

Event Description

DataProviderClass listener.modelChanged() Broadcasts when the data provider changes.

Method Description
DataProviderClass object 221

DataProviderClass.addItem()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

addItem(item)

Parameters

item An object; the item to add.

Returns

Nothing.

Description

Method; adds a single item, item, to the end of the list of items. If the item has a property named
ID, that property is overwritten with a new, unique value.

Example

The following example populates a data provider and adds an item, with a label property, to the
end of the data provider:
this.dP = new mx.central.data.DataProviderClass();

function populateDp () {
setData();
grid.dataProvider = this.dP;
statusField.text = "Click AddItemsAt button first time and AddItems the
second time.";

}

function setData(){
for (var i=0; i<6; i++) {
this.dP.addItem({label:"first "+i, data:"second"});
}

}

DataProviderClass.addItemAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

addItemAt(index, item)
222 Chapter 10: API Reference

Parameters

index The index at which to add the item.

item The item to add.

Returns

Nothing.

Description

Method; adds a single item at a specific index in the list of items. If the item has a property named
ID, that property is overwritten with a new, unique value.

Example

The following example adds an item, with a label property, to the data provider myDP at the fourth
position:
myDP.addItemAt(3, {label: "this is the fourth Item"});

DataProviderClass.addItems()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

addItems(items)

Parameters

items An array of objects (ordered) or an object of objects (unordered).

Returns

Nothing.

Description

Method; adds a set of item objects to the end of the list of items. This set can be either an array of
objects (ordered) or an object of objects (unordered). Either way, the items are stored in a specific
order once added. If any item has a property named _ID_, that property is overwritten with a
new, unique value.

Example

The following code adds 20 items to the end of the list of items:
this.dP = new mx.central.data.DataProviderClass();

function gridAddItems() {
var object2 = new Object();
for (var i=0; i<20; i++) {
DataProviderClass object 223

object2[i] ={label:"new first"+(++this.incr), data:"new second"};
}
dP.addItems(object2);
statusField.text = "Verify that 20 items are added to the end of the
dataprovider.";

}

DataProviderClass.addItemsAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

addItemsAt(index, items)

Parameters

index The number at which to add the items.

items An array of objects (ordered) or an object of objects (unordered).

Returns

Nothing.

Description

Method; adds a set of item objects to a specific index in the list of items. If any item has a
property named _ID_, that property is overwritten with a new, unique value.

Example

The following code provides an example of how to populate a data provider and use the
addItemsAt() method:
this.dP = new mx.central.data.DataProviderClass();

function populateDp () {
setData();
grid.dataProvider this.dP;
statusField.text = "Click AddItemsAt button first time and AddItems the
second time.";

}

function gridAddItemsAt() {
var object1 = new Object();
for (var i=0; i<100; i++) {
object1[i] ={label:"new first"+(++this.incr), data:"new second"};
}

dP.addItemsAt(2, object1);
224 Chapter 10: API Reference

statusField.text = "100 new rows should have been added after row 2.\nClick
clearDp button to clear the dataprovider.";

}

DataProviderClass.addListener()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

addListener(view [,doNotUpdate])

Parameters

view A reference to an object.

doNotUpdate A Boolean value. If true, the item’s modelChanged event is not triggered. If null,
undefined, or false, a modelChanged event is triggered on the referenced object.

Returns

Nothing.

Description

Method; passes a reference to an object that is added to the DataProviderClass._listeners
array, and determines whether to call the object’s modelChanged event.

If doNotUpdate is true, the item’s modelChanged event is not triggered. If doNotUpdate is null,
undefined, or false, this method triggers a modelChanged event on the reference. An event
object with an event of “updateAll” is passed to the modelChanged event.

DataProviderClass.getAllItems()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

getAllItems()

Parameters

None.

Returns

A reference to an array.
DataProviderClass object 225

Description

Method; returns the entire items array. This method returns only a reference to the actual
dataProviderInstance.items array. Any changes made directly to the returned array will likely
cause problems in the data provider. Use this accessor method for read-only purposes.

Example

The following example traces the reference returned:
var aItems:Array = myDP.getAllItems();

DataProviderClass.getIndexByKey()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

getIndexByKey(key, value)

Parameters

key A string, such as a property or label.

value A primitive data type value.

Returns

An integer, or, if no items are found, -1.

Description

Method; returns the index of the first item (starting from the beginning of the list) whose
property indicated by key matches the value passed in.

Example

The following example gets the index of the item added:
// adds two items to the list
someDp.addItem({category:"recipes", name:"salads"});
someDp.addItem({category:"recipes", name:"desserts"});

// returns the index of the first item encountered with the matching key/value
pair

var myIndex = someDp.getIndexByKey("category", "recipes");
trace(myIndex);

DataProviderClass.getIndicesByKey()

Availability

Macromedia Central Player.
226 Chapter 10: API Reference

Edition

Macromedia Central SDK.

Usage

getIndicesByKey(key, value)

Parameters

key A string, such as a property or label.

value A primitive data type value.

Returns

An array of indexes or, if no items are found, an empty array.

Description

Method; returns an array of indexes for items whose property specified by key matches value.

Example

The following example gets the indexes of the items added:
// adds two items to the list
someDp.addItem({category:"movies", name:"thrillers"});
someDp.addItem({category:"movies", name:"comedies"});

// returns the indexes of the first item encountered with the matching key-
value pair

var myIndexes = someDp.getIndexByKey("category", "movies");
trace(myIndexes);

DataProviderClass.getItemAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

getItemAt(index)

Parameters

index The index of the item to get.

Returns

An object, or, if an invalid index is used, undefined.

Description

Method; gets the item at index and returns the item.
DataProviderClass object 227

Example

The following code adds two items to the list and gets the second item:
myDp.addItem("label0", "data0");
myDp.addItem("label1", "data1");
var myItem:Object = myDp.getItemAt(1);

DataProviderClass.getItemByKey()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

getItemByKey(key, value)

Parameters

key A string, such as a property or label.

value A primitive data type value.

Returns

An object or, if no item is found, null.

Description

Method; returns the first item object found whose property specified in key matches value.

Example

The following example adds two items and returns the first item:
myDp.addItem({category:"circus", name:"tiger"});
myDp.addItem({category:"circus", name:"lion"});
// returns the first object that matches the property key
// (in this case, the item named "tiger")
var myItem:Object = myDp.getItemByKey("category", "circus");

DataProviderClass.getItemID()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

getItemID(index)
228 Chapter 10: API Reference

Parameters

index The index of the item whose index is retrieved.

Returns

A string.

Description

Method; returns the value of the item._ID_ property found at index. The returned value is a
string data type but can be evaluated to a number.

Example

The following example gets the ID of the third item in the list:
var itemID:String = getItemID(2);

DataProviderClass.getItemsByKey()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

getItemsByKey(key, value)

Parameters

key A string.

value A primitive data type value.

Returns

An array of objects, or, if no items are found, an empty array.

Description

Method; returns an array of objects whose property specified in key matches value. The items
returned are in the same order (relative to one another) as in the data provider.

Example

The following example adds two items to the list and returns them both:
// returns both objects that match the property key
myDp.addItem({category:"hobbit", name:"frodo"});
myDp.addItem({category:"hobbit", name:"bilbo"});
var matchingItems:Array = myDp.getItemsByKey("category", "hobbit");
DataProviderClass object 229

DataProviderClass.getLength()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

getLength()

Parameters

None.

Returns

An integer.

Description

Method; returns the total number of items in the data provider.

Example

The following example traces the total number of items in the list:
var qty:Number = myDp.getLength();
trace("There are " + qty + " items in the list.");

DataProviderClass.getSortState()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

getSortState()

Parameters

None.

Returns

A sort object with two string properties.

Description

Method; returns a sort object with two string properties, sortField and order:

• sortField is the property name last used for sorting or last passed to the sort method.
230 Chapter 10: API Reference

• order is the order property. Its value depends on what, if anything, was last passed to the sort
or sortItemsBy methods. Possible values are ascending, "ASC"; descending,"DESC"; or an
empty string, "".

If the properties have no value, they still show as empty strings.

Example

The following example gets and displays the sort state for a DataProviderClass instance:
var sortObject:Object = myDP.getSortState();
trace("sortField=" + sortObject.sortField);
trace("order=" + sortObject.order);

DataProviderClass listener.modelChanged()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

listenerObject = new Object();
listenerObject.modelChanged = function(eventObject){
 // insert your code here
}
myDataProvider.addListener(listenerObject)

Parameters

eventObject An object with additional properties.

Returns

Nothing.

Description

Event; broadcast when the data provider changes. The modelChanged() method is not a method
of the DataProviderClass; it is a function called by the DataProviderClass on an object registered
as a view or listener object.

The eventObject object has the following properties:

• source A reference back to the data provider instance that initiated the event.
• event A string identifying the type of change made so that any listening views can perform

granular updates. The following strings are possible values: "updateAll", "updateRows",
"deleteRows", "sort", or "addRows".

• firstRow The number of the first row affected by the change.
• lastRow The number of the last row affected by the change.

Note: The firstRow and lastRow parameters are the same if only one row was affected. They are
omitted if the event is "sort" or "updateAll".
DataProviderClass object 231

DataProviderClass.removeAll()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

removeAll()

Parameters

None.

Returns

Nothing.

Description

Method; removes all items in the data provider.

Example

The following code removes all items from a DataProviderClass instance:
myDp.removeAll();

DataProviderClass.removeItemAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

removeItemAt(index)

Parameters

index The index of the item to remove.

Returns

An object.

Description

Method; removes the item at index and returns the removed item.

Example

The following code removes the third item in the list:
var removedItem:Object = myDp.removeItemAt(2);
232 Chapter 10: API Reference

DataProviderClass.removeListener()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

removeListener(listenerObj)

Parameters

listenerObj A reference to an object.

Returns

Nothing.

Description

Method; searches the _listeners array for the reference passed in, and removes it if found.

Example

The following code removes a listener from the DataProviderClass instance named myDp:
myDp.removeListener(myListener);

DataProviderClass.replaceAllItems()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

replaceAllItems(items)

Parameters

items An array of objects (ordered) or an object of objects (unordered).

Returns

Nothing.

Description

Method; deletes all of the items in the list and replaces them with the items specified in the items
parameter.
DataProviderClass object 233

DataProviderClass.replaceItemAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

replaceItemAt(index, item)

Parameters

index The index of the item to be replaced.

item An object.

Returns

Nothing.

Description

Method; overwrites an item at the specified index with a new item object. If the item passed in
has an _ID_ property, that property is overwritten with a new one.

Example

The following code replaces the fourth item in the list with the new item:
myDp.replaceItemAt(3, {category: "circus" , name: "lion"});

DataProviderClass.setItemByKey()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

setItemByKey(key, item)

Parameters

key A string.

item An object.

Returns

The index of the overwritten item.
234 Chapter 10: API Reference

Description

Method; overwrites an existing item object using the key of any existing item property. The key
specified is used to locate the existing item by matching that property on the item specified in
item.

Example

The following code adds an item at the fourth position then overwrites the item using the
property key:
myDp.addItemAt(3, {label : "bear"});
myDp.setItemByKey("bear", {label: "tiger"});

DataProviderClass.sort()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

sort(sortFunction[,key, order])

Parameters

sortFunction A function.

key A string that should map to an item property that you have defined.

order A string, "ASC" for ascending order or "DESC" for descending order.

Returns

Nothing.

Description

Method; sorts the items in a list using a custom function, similar to Array.sort, but lets you also
pass in additional parameters to retrieve sort selections made by the user and make them
persistent.

Note: This method uses ActionScript to execute the sort, which is inherently slow. For large data
sets, you might want to use the sortItemsBy method, which uses the native C++ implementation of
the Array.sortOn method.

Example

The following code sorts the list by the name property in ascending order, using a predefined sort
function named mySortFunction:
myDp.sort(mySortFunction, "name", "ASC");
DataProviderClass object 235

DataProviderClass.sortItemsBy()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

sortItemsBy(key, order)

Parameters

key A string that should map to an item property that you have defined.

order A string, "ASC" for ascending order or "DESC" for descending order.

Returns

Nothing.

Description

Method; sorts the items in the specified order, using the built-in Array.sortOn method, with the
item property specified in key.

This method works only for items that have a primitive data type in the specified key.

Note: This method uses the native C++ implementation of the Array.sortOn method. That
implementation sorts items by their ASCII codes, which means that all lowercase characters appear
before uppercase characters. For example, lowercase “z” is placed before uppercase “A”. To sort in
proper alphabetical order, you can create a new item property that has each item in uppercase letters,
and sort on that property. This implementation will likely be faster than using a custom sort function.

Example

The following example sorts items by their name property in ascending order:
myDp.sortItemsBy("name", "ASC");

DataProviderClass.updateItem()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

updateItem(item)

Parameters

item The existing object that overwrites the internal item.
236 Chapter 10: API Reference

Returns

The index into which the item was passed.

Description

Method; passes an existing item object to the data provider to overwrite an internal item with the
same _ID_ property.

DataProviderClass.updateItemByIndex()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

updateItemByIndex(index, item)

Parameters

index The index of the item to be overwritten.

item The new item object.

Returns

The index of the overwritten item.

Description

Method; overwrites the existing item object at index with a new item object. If the item object
passed in does not have an _ID_ property, an _ID_ property is added to the new item object.

DataProviderClass.updateView()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

updateView(view, eventObject)

Parameters

view A reference to an object.

eventObject A valid event object.

Returns

Nothing.
DataProviderClass object 237

Description

Method; broadcasts events. Use to broadcast events other than the modelChanged event for any
objects that extend the DataProviderClass object. This method is called for each _listener that
is added when the data provider triggers an event. The method currently contains one line of
code: view.modelChanged(eventObj);

FileReference object

ActionScript Class Name FileReference

Central applications can access local files using the FileReference object. FileReference objects
refer to a single file on the user’s local disk.

Method summary for the FileReference object

Method Description

FileReference.browse() Initializes the FileReference object by prompting the user to select
a file anywhere on the local disk.

FileReference.close() Closes the file and finishes all read and write operations.

FileReference.copy() Creates a copy of the file.

FileReference.copyIntoCache() Creates a copy of the file in the local Internet cache.

FileReference.create() Initializes the FileReference object by creating a file in the user’s
local Internet cache.

FileReference.deleteFile() Deletes the file.

FileReference.download() Initializes the FileReference object by downloading a file from the
Internet and saving it on the user’s local disk.

FileReference.exists() Checks to see whether a file exists in the user’s local Internet
cache.

FileReference.getPosition() Gets the current read or write position in the file.

FileReference.locate() Displays the file using Windows Explorer or Macintosh Finder.

FileReference.move() Moves a file to a new location.

FileReference.open() Initializes the FileReference object by opening a file in the user’s
local Internet cache.

FileReference.readBytes() Reads a specified number of bytes from the file into an array.

FileReference.readFile() Reads the entire contents of a file into a string.

FileReference.readString() Reads a specified number of bytes from the file into a string.

FileReference.rename() Renames the file.

FileReference.saveAs() Saves the file to a new location outside of the local Internet cache.

FileReference.setPosition() Sets the current read or write position in the file.

FileReference.upload() Uploads the file using HTTP POST.
238 Chapter 10: API Reference

Property summary for the FileReference object

Event handler summary for the FileReference object

Initializing FileReference objects

You can initialize FileReference objects in the following three ways:

• The browse() method allows the application to open any file on the user’s disk. The user is
prompted to choose a specific file.

• The download() method initiates the downloading of a remote URL, and prompts the users
where to save the file.

FileReference.writeBytes() Writes an array of bytes to the file.

FileReference.writeString() Writes a string to the file.

Property Description

FileReference.name The name of the file.

FileReference.creationDate The date the file was created.

FileReference.creator The Macintosh 4 character creator string; undefined on
Windows.

FileReference.modificationDate The date the file was last modified.

FileReference.readOnly A flag indicating whether a file has been marked read-only or
locked by the system.

FileReference.size The size of the file in bytes.

FileReference.type The file extension (Windows) or Macintosh 4 character file type.

Event handler Description

FileReference listener.onDownloadFailed Called when an error occurs while downloading.

FileReference listener.onDownloadProgress Called while downloading, to report transfer
progress.

FileReference listener.onDownloadStart Called at the beginning of a download operation.

FileReference listener.onDownloadSuccess Called when downloading completes successfully.

FileReference listener.onFileError Called when an error occurs during a file operation.

FileReference listener.onEndOfFile Called when the end of the file is reached during a
read operation.

FileReference listener.onUploadFailed Called when an error occurs while uploading.

FileReference listener.onUploadProgress Called while uploading, to report transfer progress.

FileReference listener.onUploadStart Called at the beginning of an upload operation.

FileReference listener.onUploadSuccess Called when uploading completes successfully.

Method Description
FileReference object 239

• The create() and open() methods allow the application to open a file in the user’s local
Internet cache. This file may be deleted if the size of the local Internet cache exceeds the limit
set by the user.

After a FileReference object has been initialized, it can be read, written, and uploaded to a remote
URL using HTTP POST.

Uploading and Downloading files

You can upload and download files using the upload() and download() methods. These
methods initiate a file transfer and return immediately. You can track progress of the transfer
using events. In order to receive events, the application should create a listener object that
processes events as they happen.

Note: Some server-side upload scripts may limit the amount of POST data received using the upload
method (for example, a .NET server will limit the POST data size to 4MB maximum unless you edit
the web application’s web.config file manually). Please consult your server development
documentation for further details.

The following example uploads a file and keeps track of its progress:
var listener = new Object();

// show the upload progress to the user
listener.onUploadProgress = function(fileRef, sent, size) {

gShell.setProgress(sent / size * 100);
gShell.setStatus("Uploaded " + sent + " of " + size + " bytes");

}

// when the upload operation is complete, update the status and progress
listener.onUploadSuccess = function(fileRef, response) {

gShell.setProgress(0);
gShell.setStatus("File upload completed");

}

// the upload operation may fail
listener.onUploadFailed = function(fileRef, error, response) {

gShell.setProgress(0);
gShell.setStatus("File upload failed");

}

// initiate the upload operation with a pre-initialized FileReference object
function uploadFile(fileRef) {

fileRef.addListener(listener);
gShell.setStatus("Beginning to upload file");

// initiate the upload operation
fileRef.upload("http://www.mysite.com/cgi-bin/submit.cgi");

}

240 Chapter 10: API Reference

Reading and Writing files

An application can read from a file with readFile(), readBytes() or readString(). An
application can also write to a file using writeBytes() or writeString(). When file reading or
writing is complete, the application should call close() to close the file. The file also closes when
the FileReference object is destroyed.

When a file is read with readFile(), the entire contents of the file are read and returned in a
string.

All other read and write methods maintain a current read/write position in the file. When a file is
read or written with one of these methods, the read/write position moves forward by the number
of bytes read. You can access the current read/write position with getPosition() and change it
with setPosition().

Constructor for the FileReference object

Availability

Macromedia Central 1.5

Usage

fileRef = new FileReference();

Parameters

None.

Returns

Nothing.

Description

Constructor; creates a FileReference object. You cannot use the FileReference object until you
initialize it with FileReference.browse(), FileReference.create(),
FileReference.open(), or FileReference.download().

Example

// first create the object
var fileRef = new FileReference();

// now initialize it with create()
fileRef.create("log.txt");

FileReference.browse()

Availability

Macromedia Central 1.5

Usage

fileRef.browse([typelist [, defaultName]]);
FileReference object 241

Example

// ask the user to choose an image file for upload
var fileRef = new FileReference();
if (fileRef.browse(["Images", "*.jpg;*.gif;*.png", "Flash Movies", "*.swf"]))

{
trace("Opened " + fileRef.name);

} else {
trace("User cancelled");

}

Parameters

typelist Array of strings; describes the list of file types that the application can accept from
the user.

defaultName String; the default name of a file to request from the user.

Returns

A Boolean value: true if the user chose a file; false if the user did not choose a file.

Description

Method; initializes the FileReference object by prompting the user to select a file on the local disk.
This method also grants permission to read the file. If the application performs any write
operations, the user is prompted to confirm that write permission is allowed.

The typelist parameter is used to limit the user’s selection in the file browse dialog box by
presenting a list of one or more filters. Each filter is represented by a set of two or three strings, as
follows:

• The first string is a user-visible description of the file, such as “Text Files”.
• The second string is a semicolon-separated list of wildcard matches, such as “*.txt;*.ini”.
• The third string is optional, and is a semicolon-separated list of Macintosh file types, such as

“TEXT;ttxt”. This parameter is ignored if Central is not running on the Macintosh platform.

For example, to open an image or Flash SWF file, you might pass the array ["Image files",
"*.jpg;*.gif;*.png", "JPEG;jp2_;GIFf", "Flash Movies", "*.swf", "SWFL"]. If you
want to include an option for every file, you must manually include a wildcard entry, such as
"All files", "*.*".

If you omit the typelist parameter, the default filter includes all files, and any file is selectable
by the user.

Use the defaultName parameter to suggest the name of a file to the user. This name will appear
in the title bar of the file selection dialog.

You cannot use the browse() method to create new files. For information about creating files, see
“FileReference.create()” on page 244.
242 Chapter 10: API Reference

FileReference.close()

Availability

Macromedia Central 1.5

Usage

fileRef.close();

Example

// read vars.txt if it exists
var fileRef = new FileReference();
if (fileRef.open("vars.txt")) {

data = fileRef.readFile();
fileRef.close();

}

Parameters

None.

Returns

Nothing.

Description

Method; closes a file that was previously opened by a call to open() or create(). The close()
method clears all the properties on the object, and the reference to the file itself. Execute methods
such as saveAs() or copy() before closing the object. The file also closes when the FileReference
object goes away.

FileReference.copy()

Availability

Macromedia Central 1.5

Usage

fileRef.copy(newName);

Example

// make a backup copy of vars.txt if it exists
var fileRef = new FileReference();
if (fileRef.open("vars.txt")) {

fileRef.copy(“vars2.txt”);
}

Parameters

newName String; the relative name of the new file in the local Internet cache.

Returns

A Boolean value that indicates the success or failure of the file copy operation. A true value
indicates success.
FileReference object 243

Description

Method; makes a copy of a file in the local Internet cache.

FileReference.copyIntoCache()

Availability

Macromedia Central 1.5

Usage

fileRef.copyIntoCache(newName);

Example

// make a working copy of a file on the user’s disk
var fileRef = new FileReference();
if (fileRef.browse(["Text Files", "*.txt"]) {

fileRef.copyIntoCache("backup-data.txt");
var newFile = new FileReference();
newFile.open("backup-data.txt");

// operate on new file
// ...

}

Parameters

newName String; the name of the new file.

Returns

A Boolean value that indicates the success or failure of the file copy operation. A true value
indicates success.

Description

Method; creates a copy of a file and places it in the local Internet cache. The current FileReference
object continues to refer to the original file.

FileReference.create()

Availability

Macromedia Central 1.5

Usage

fileRef.create(relativePath [, bOverWrite]);

Example

// create vars.txt and write one entry
var mapValue = "right at the light.";
var fileRef = new FileReference();

// create the file if necessary
if (!fileRef.exists("vars.txt")) {
244 Chapter 10: API Reference

fileRef.create("vars.txt", false)
} else {

fileRef.open("vars.txt");
}

// now store the value
fileRef.writeString("map=" + mapValue);

Parameters

relativePath String; specifies a relative path to a file in the local Internet cache.

bOverWrite Boolean value; indicates whether the file should be overwritten if it already exists.
If the parameter is set to true and the file already exists, a new empty file will overwrite the
existing one. The default value is false.

Returns

A Boolean value: true if the create() method succeeds. The function only returns false if the
file was not created and the file did not previously exist (for example, in the case of an invalid
filename). If this parameter is set to false and the file already exists, the create() method will
return a value of true.

Description

Method; creates a file in the user’s local Internet cache. The file is stored relative to the calling
SWF file. If the file exists and is overwritten by setting the overwrite parameter to true, the
existing file is erased and the file has a size of zero.

If the relativePath parameter contains directory names, the directories are created as necessary.
For example, if relativePath is "photos/january/home.jpg" and the photos directory does
not exist, the photos directory and the january subdirectory are created.

The FileReference object has read, write, and upload permissions granted when it is created.

To create files outside of the local Internet cache, use the create() method to create the file in
the cache, and then use the saveAs() method to prompt the user for a new location. For more
information about using saveAs(), to change files outside of the local Internet cache, see
“FileReference.saveAs()” on page 263.

FileReference.creationDate

Availability

Macromedia Central 1.5

Usage

fileRef.creationDate

Example

// retrieve the creation date of a file chosen by the user
var fileRef = new FileReference();
if (fileRef.browse(["JPEG files", "*.jpg"])) {

trace("File was created on " + fileRef.creationDate);
}

FileReference object 245

Description

Date object; a read-only property that represents the date that the file was originally created.

FileReference.creator

Availability

Macromedia Central 1.5

Usage

fileRef.creator

Example

// retrieve the creator of a file chosen by the user
var fileRef = new FileReference();
if (fileRef.browse(["JPEG files", "*.jpg"])) {

trace("File is of type " + fileRef.creator);
}

Description

String; only available on the Macintosh. It is the four-character creator type of the file. If this
property is set by the application, it changes the creator ID on the disk.

This property is always undefined on Windows.

FileReference.deleteFile()

Availability

Macromedia Central 1.5

Usage

fileRef.deleteFile();

Example

var fileRef = new FileReference();

if (fileRef.open("temp.txt")) {
data = fileRef.readFile();
fileRef.deleteFile();

}

Parameters

None.

Returns

A Boolean value: indicates the success or failure of the file deletion. A true value indicates that
the file was deleted successfully.

Description

Method; deletes a file in the local Internet cache that has been opened with write permission. Files
cannot be deleted after they have been closed.
246 Chapter 10: API Reference

FileReference.download()

Availability

Macromedia Central 1.5

Usage

fileRef.download(remoteURL)

Example

var fileRef = new FileReference();
var listener = new Object();
listener.onDownloadSuccess = function(fileRef) {

trace("Download complete.");
}

fileRef.addListener(listener);
if (fileRef.download("http://www.mysite.com/banner.gif")) {

trace("Download has begun");
} else {

trace("Download aborted");
}

Parameters

remoteURL String; the URL of a file to be downloaded.

Returns

A Boolean value: true indicates that the user chose a destination for the downloaded file;
otherwise false.

Description

Method; initializes the FileReference by prompting the user for a location to store a downloaded
file. It then begins downloading the file into that location. The call to the download() method
returns as soon as the user has chosen a target location. If the user does not select a location for
the file, usually by pressing the Cancel button in the file selection dialog box, the download()
method returns false.

To track the progress and completion of the download operation, an application should use an
event listener object to receive event notifications. The following notifications are sent during the
download operation:

Event Description

FileReference listener.onDownloadStart The download has begun.

FileReference listener.onDownloadProgress Some data has been downloaded.

FileReference listener.onDownloadSuccess The download operation has finished and the file is
saved to disk.

FileReference listener.onDownloadFailed The download operation failed and the file has been
deleted.
FileReference object 247

Applications can use the file after the onDownloadSuccess event has occurred. The
onDownloadProgress events may occur before, between, or after onDownloadStart and
onDownloadSuccess events. Applications should use the onDownloadProgress event solely to
provide visual feedback to the user, and should not make any assumptions about the order of
these events.

When the download operation is complete, the application does not have any permissions to read
or write the file. If the application begins a read or write operation with a downloaded file, the
user is prompted to grant permission for the given operation.

FileReference.exists()

Availability

Macromedia Central 1.5

Usage

fileExists = FileReference.exists(relativePath);

Example

var fileRef = new FileReference();

// read the file if it has not been locked by another
// application. Other applications will create a .lck
// file to indicate that the file is locked.
if (!fileRef.exists("data.lck")) {

fileRef.open("data.txt");
data = fileRef.readFile();
fileRef.close();

}

Parameters

relativePath String; the relative path to a file in the local Internet cache.

Returns

A Boolean value that indicates whether the file exists.

Description

Method; determines whether a file exists in the local Internet cache. This method is frequently
used to determine if a file should be opened or created. The FileReference object does not need to
be initialized to call the exists() method.

FileReference.getPosition()

Availability

Macromedia Central 1.5

Usage

position = fileRef.getPosition();
248 Chapter 10: API Reference

Example

// write an array of strings and keep track of total progress
function saveValues(strings) {

var fileRef = new FileReference();
fileRef.create("strings.txt");

// write the strings to the file
for (var i=0; i<strings.length; i++) {

var data = fileRef.writeString(strings[i] + "\n");
trace("Written " + fileRef.getPosition() + " bytes so far");

}

fileRef.close();
}

Parameters

None.

Returns

A number that indicates the current read and write position in the current file.

Description

Method; returns the current read and write position in the current file. Future calls to
writeBytes() and writeString() begin writing at this offset in the file. You can use this
method to determine how many bytes have been read, or use it in conjunction with the
setPosition() method as an aid in random access of file contents.

For more information about changing the current read and write location of a file, see
“FileReference.setPosition()” on page 265.

FileReference.locate()

Availability

Macromedia Central 1.5

Usage

fileRef.locate()

Example

var fileRef = new FileReference();
fileRef.download("http://www.mysite.com/photos/photo.jpg");
fileRef.locate();

Parameters

None.

Returns

Nothing.
FileReference object 249

Description

Method; displays the location of the file to the user using the operating system’s file manager. On
Windows, a Windows Explorer window is opened for the containing folder. On the Macintosh,
the Finder is used to display the folder that contains the file.

FileReference.modificationDate

Availability

Macromedia Central 1.5

Usage

fileRef.modificationDate

Example

var fileRef = new FileReference();
if (fileRef.open(“data.txt”)) {

trace("File was last modified: "+ fileRef.modificationDate);
}

Description

Date object; a read-only property that represents the current date of the file as it is stored by the
system.

FileReference.move()

Availability

Macromedia Central 1.5

Usage

fileRef.move([otherFileRef])

Example

function MoveDataTo(newFileRef) {
var fileRef = new FileReference();

// move the existing data.txt to a new location
if (fileRef.open("data.txt")) {

fileRef.move(newFileRef);
}

}

Parameters

otherFileRef FileReference; an optional destination for the file.

Returns

A Boolean value; determines whether the move succeeded, or failed due to a file error or due to
the user cancelling the operation.
250 Chapter 10: API Reference

Description

Method; moves an opened file to a new location. If the otherFileRef parameter is omitted, the
user is prompted for a destination for the file. If a FileReference object is supplied for the
otherFileRef parameter, the user is prompted to confirm the destination of the file. For more
information about changing files outside of the local Internet cache, see “FileReference.saveAs()”
on page 263.

FileReference.name

Availability

Macromedia Central 1.5

Usage

fileRef.name

Example

var fileRef = new FileReference();

if (fileRef.browse(["Text Files", "*.txt"])) {
trace("User chose the file "+ fileRef.name);

}

Description

String; a read-only property that represents the name of the file on the local disk.

It does not include the path to the file and it cannot be used to rename the file.

FileReference listener.onDownloadFailed

Availability

Macromedia Central 1.5

Usage

listener.onDownloadFailed = function(fileRef, error) {

}

Example

var listener = new Object();
listener.onDownloadFailed = function(fileRef, error) {

if (error == 404)
trace("That URL does not exist");

else
trace("Error downloading " + fileRef.name);

}

var fileRef = new FileReference();
fileRef.addListener(listener);
fileRef.download("http://www.mysite.com/image1.jpg");
FileReference object 251

Parameters

fileRef FileReference object; the object that initiated the event.

error Number; the network error number.

Returns

Nothing.

Description

The onDownloadFailed event is called when there is an error in downloading the file. This can
be caused by a bad URL or a broken connection during the download operation.

The error parameter may be -1 for a general network error, or an HTTP error number, such as
404, to indicate that a page is not found. HTTP error values can be found in sections 10.4 and
10.5 of the HTTP specification at ftp://ftp.isi.edu/in-notes/rfc2616.txt.

See also “FileReference.download()” on page 247.

FileReference listener.onDownloadProgress

Availability

Macromedia Central 1.5

Usage

listener.onDownloadProgress = function(fileRef, received, size) {

}

Example

var listener = new Object();
listener.onDownloadProgress = function(fileRef, received, size) {

trace("Received " + (received/size*100) + "% of file");
}

var fileRef = new FileReference();
fileRef.addListener(listener);
fileRef.download("http://www.mysite.com/image1.jpg");

Parameters

fileRef FileReference object; the object that initiated the event.

received Number; the total bytes downloaded so far.

size Number; the total number of bytes to be downloaded. The size parameter is -1 if the
final size cannot be determined.

Returns

Nothing.
252 Chapter 10: API Reference

Description

Event; called periodically during a file download operation. It reflects the number of bytes already
downloaded, as well as the total bytes to be downloaded. The total download size cannot always
be determined until the download is complete. In this case, the size parameter is -1 for all
onDownloadProgress events.

The received parameter refers to the number of bytes transferred, including any protocol
headers. It does not refer to the current total size of the completed file. Applications should not
depend on the size of received parameters, except to provide visual feedback for download
progress.

See also “FileReference.download()” on page 247.

FileReference listener.onDownloadStart

Availability

Macromedia Central 1.5

Usage

listener.onDownloadStart = function(fileRef) {

}

Example

var listener = new Object();
listener.onDownloadStart = function(fileRef) {

trace("Download of " + fileRef.name + " has begun");
}

var fileRef = new FileReference();
fileRef.addListener(listener);
fileRef.download("http://www.mysite.com/image1.jpg");

Parameters

fileRef FileReference object; the object that initiated the event.

Returns

Nothing.

Description

Event; called when a file download operation is initiated by a call to FileReference.download().
This event only indicates that a file download has been requested, but does not indicate any
success or failure of the initial network connection.

See also “FileReference.download()” on page 247 and “FileReference listener.onDownloadFailed”
on page 251.
FileReference object 253

FileReference listener.onDownloadSuccess

Availability

Macromedia Central 1.5

Usage

listener.onDownloadSuccess = function(fileRef) {

}

Example

var listener = new Object();
listener.onDownloadSuccess = function(fileRef) {

trace("Download of " + fileRef.name + " complete.");
}

var fileRef = new FileReference();
fileRef.addListener(listener);
fileRef.download("http://www.mysite.com/image1.jpg");

Parameters

fileRef FileReference object; the object that initiated the event.

Returns

Nothing.

Description

Event; called when a file download operation has successfully completed. After this event has been
called, it is safe to use the file.

See also “FileReference.download()” on page 247 and “FileReference listener.onDownloadFailed”
on page 251.

FileReference listener.onFileError

Availability

Macromedia Central 1.5

Usage

listener.onFileError = function(fileRef, errorCode, errorText) {

}

Example

var listener = new Object();
listener.onFileError = function(fileRef, errorCode, errorText) {

trace("Error number " + errorCode + " reading " + fileRef.name + ": " +
errorText);

}

var fileRef = new FileReference();
fileRef.addListener(listener);
254 Chapter 10: API Reference

// handle errors gracefully, let the listener deal with specifics
if (fileRef.open("file.txt")) {

fileRef.upload("http://www.mysite.com/upload.cgi");
}

Parameters

fileRef FileReference object; the object that initiated the event.

errorCode Number; identifies the particular error.

errorText String; a text description of the error that can be presented to the user.

Returns

Nothing.

Description

Event; called when a general file error occurs. This may occur during reading, writing, opening,
or closing a file. The errorCode parameter identifies the particular error, and the errorText
parameter provides a verbose description that can be presented to the user.

Most FileReference methods indicate success or failure of the operation. The onFileError event
is provided to determine what caused the error.

The following is a list of errors and descriptions:

FileReference listener.onEndOfFile

Availability

Macromedia Central 1.5

Usage

listener.onEndOfFile = function(fileRef) {

Error code Error text Description

-1 none A generic error has occurred and Central cannot identify its
cause.

-2 Access Denied An error has occurred writing, renaming, or deleting a file that is
read-only or already opened by another application.

-3 File Not Found The target file cannot be found.

-4 Security Violation The requested action is disallowed by system policy; for
example, attempting to write to an executable file.

-5 Invalid File Name The creation or renaming of a file failed because the filename is
not valid.

-6 Out of Disk Space The disk is full and no more data can be written to this file.

-7 User Denied Access The user is denied permission to complete the action.

-8 File Limit Exceeded The maximum file size of 20 megabytes has been reached.
FileReference object 255

}

Example

var listener = new Object();
listener.onEndOfFile = function(fileRef) {

trace("Ran out of data reading "+ fileRef.name);
}

var fileRef = new FileReference();
fileRef.addListener(listener);

// handle errors gracefully, let the listener deal with specifics
if (fileRef.open("file.txt")) {

str = fileRef.readString(100);
}

Parameters

fileRef FileReference object; the object that initiated the event.

Returns

Nothing.

Description

Event; occurs when a read operation reaches the end of a file during the read operation.

See also “FileReference.readBytes()” on page 260, “FileReference.readFile()” on page 261, and
“FileReference.readString()” on page 262.

FileReference listener.onUploadFailed

Availability

Macromedia Central 1.5

Usage

listener.onUploadFailed = function(fileRef, error, response) {

}

Example

var listener = new Object();
listener.onUploadFailed = function(fileRef, err, response) {

trace("Error number " + err + " during upload");
}

var fileRef = new FileReference();
fileRef.addListener(listener);

// create a file and fill it with data
fileRef.create("data.txt");
fileRef.writeString(“enable=true\n");
256 Chapter 10: API Reference

// upload the file
fileRef.upload("http://www.mysite.com/upload.cgi");

Parameters

fileRef FileReference object; the object that initiated the event.

error Number; the network error number.

response String; the body of the response from the server.

Returns

Nothing.

Description

Event; called when there is an error uploading a file. This could occur because of a bad URL,
because the server rejected the HTTP POST, or because of an error during the transfer.

The error parameter may be -1 for a general network error, or an HTTP error number, such as
404, to indicate that a page is not found. HTTP error values can be found in sections 10.4 and
10.5 of the HTTP specification at ftp://ftp.isi.edu/in-notes/rfc2616.txt.

The response parameter can be used to capture the body of the HTTP response from the server.

See also “FileReference.upload()” on page 266.

FileReference listener.onUploadProgress

Availability

Macromedia Central 1.5

Usage

listener.onUploadProgress = function(fileRef, sent, size) {

}

Example

var listener = new Object();
listener.onUploadProgress = function(fileRef, sent, size) {

trace("Uploaded " + sent + " of " + size + " bytes");
}

var fileRef = new FileReference();
fileRef.addListener(listener);

// create a file and fill it with data
fileRef.create("data.txt");
fileRef.writeString("enable=true\n");

// upload the file
fileRef.upload("http://www.mysite.com/upload.cgi");

Parameters

fileRef FileReference object; the object that initiated the event.
FileReference object 257

sent Number; the number of bytes uploaded so far.

size Number; the total size of the file to be uploaded, in bytes.

Returns

Nothing.

Description

Event; called periodically during a file upload operation. It reflects the number of bytes already
uploaded, as well as the total bytes to be uploaded.

The sent parameter refers to the number of bytes transferred, including any protocol headers. It
does not refer to the size of the file. The size parameter refers to the total size of the file to be
uploaded. Applications should not depend on the size or sent parameters, except to provide
visual feedback for upload progress. The FileReference listener.onUploadSuccess event indicates
that the file transfer has finished successfully.

On Macintosh systems before OS X 10.3, the progress of the upload operation cannot be
determined. The onUploadProgress event is called during the upload operation, but the sent
parameter will be -1 to indicate an indeterminant progress.

See also “FileReference.upload()” on page 266.

FileReference listener.onUploadStart

Availability

Macromedia Central 1.5

Usage

listener.onUploadStart = function(fileRef) {

}

Example

var listener = new Object();
listener.onUploadStart = function(fileRef) {

trace("Upload has begun");
}

var fileRef = new FileReference();

// ask the user to choose a file to upload
if (fileRef.browse(["Text Files", "*.txt"])) {

fileRef.addListener(listener);
fileRef.upload("http://www.mysite.com/upload.cgi");

}

Parameters

fileRef FileReference object; the object that initiated the event.

Returns

Nothing.
258 Chapter 10: API Reference

Description

Event; called when a file upload operaton is initiated by a call to FileReference.upload(). This
event only indicates that a file upload operation has been requested, but does not indicate the
success or failure of the initial network connection.

See also “FileReference.upload()” on page 266 and “FileReference listener.onUploadFailed”
on page 256.

FileReference listener.onUploadSuccess

Availability

Macromedia Central 1.5

Usage

listener.onUploadSuccess = function(fileRef, response) {

}

Example

var listener = new Object();
listener.onUploadSuccess = function(fileRef) {

trace("Upload complete");
}

var fileRef = new FileReference();

// ask the user to choose a file to upload
if (fileRef.browse(["Text Files", "*.txt"])) {

fileRef.addListener(listener);
fileRef.upload("http://www.mysite.com/upload.cgi");

}

Parameters

fileRef FileReference object; the object that initiated the event.

response String; the body of the response from the server.

Returns

Nothing.

Description

Event; called when a file upload operation has completed successfully. The response parameter
can be used to capture the HTTP output from the server.

See also “FileReference.upload()” on page 266

FileReference.open()

Availability

Macromedia Central 1.5
FileReference object 259

Usage

fileRef.open(relativePath);

Example

var fileRef = new FileReference();

// open the file and read 100 bytes
if (fileRef.open("data.txt")) {

data = fileRef.readString(100);
} else {

trace("Cannot open data.txt");
}

Parameters

relativePath String; the relative path to an existing file in the local Internet cache.

Returns

A Boolean value that indicates whether the file was opened successfully.

Description

Method; opens an existing file in the local Internet cache.

The FileReference object has read, write, and upload permissions granted when the file is opened.

FileReference.readBytes()

Availability

Macromedia Central 1.5

Usage

data = fileRef.readBytes(count);

Example

var fileRef = new FileReference();

if (fileRef.open("data.dat")) {
// read a 3 byte header from the file
var data = fileRef.readBytes(3);
if (data[0] != 25 || data[1] != 100 || data[2] != 255) {

trace("Invalid signature, file is corrupt");
}

}

Parameters

count Number; the number of bytes to read.

Returns

An array of numbers that contains the next count bytes in the file.
260 Chapter 10: API Reference

Description

Method; reads the specified number of bytes at the current read-write position, and returns an
Array of integers, with values ranging from 0 to 255. This method is commonly used to read
binary data from a file.

After the data has been read, the read-write position is moved forward by the specified number of
bytes.

The length of the resulting Array indicates the number of bytes read. If the end of the file is
reached before the requested number of bytes are read, the resulting Array contains only the
remaining bytes in the file.

Note: The recommended limit on the fileReference object for the readBytes() method is 1MB, for
performance. However, Central does not enforce an absolute limit.

See also “FileReference.readFile()” on page 261 and “FileReference.setPosition()” on page 265.

FileReference.readFile()

Availability

Macromedia Central 1.5

Usage

string = fileRef.readFile();

Example

// open data file and read into file_data
var fileRef = new FileReference();
if (fileRef.open("data.txt")) {

file_data = fileRef.readFile();
}

Parameters

None.

Returns

A string that contains the contents of the entire file.

Description

Method; reads the entire file contents into a string. It reads from the beginning of the file,
ignoring any previous calls to FileReference.setPosition(). This method should only be used to
read text files.

After the data has been read, the read-write position is moved to the end of the file.

See also “FileReference.readBytes()” on page 260 and “FileReference.readString()” on page 262.
FileReference object 261

FileReference.readOnly

Availability

Macromedia Central 1.5

Usage

fileRef.readOnly

Example

var fileRef = new FileReference();
if (fileRef.browse(["Text files", "*.txt"])) {

if (fileRef.readOnly)
trace("File is read-only");

}

Description

String; a read-only Boolean property that indicates whether the system has locked the file or
marked it read-only. If it is true, the file is locked and can only be read or uploaded.

This property is not related to the file permissions granted to the FileReference object. For
example, it is possible for a user to choose a locked file in response to a call to
FileReference.browse() with the “w” write property requested. In this case, the readOnly property
is true.

The property itself is read-only and cannot be changed.

FileReference.readString()

Availability

Macromedia Central 1.5

Usage

string = fileRef.readString(count);

Example

var fileRef = new FileReference();
if (fileRef.open("local.txt")) {

// make sure the file begins with "FILESTART0"
data = readString(10);
if (data != "FILESTART9") {

trace("Invalid signature, file is corrupt!");
}

}

Parameters

count Number; the number of bytes to read.

Returns

A string that contains the next count bytes in the file.
262 Chapter 10: API Reference

Description

Method; reads data from the file at the current read-write position. After the data has been read,
the read-write position is moved forward. This method should only be used to read text files.

The length of the resulting string indicates the number of bytes read. If the end of the file is
reached before the requested number of bytes are read, the resulting string contains only the
remaining bytes in the file.

See also “FileReference.readBytes()” on page 260, “FileReference.readFile()” on page 261, and
“FileReference.setPosition()” on page 265.

FileReference.rename()

Availability

Macromedia Central 1.5

Usage

fileRef.rename(newName);

Example

var fileRef = new FileReference();
if (fileRef.open("beach.jpg") {

fileRef.rename("beach_backup.jpg");
}

Parameters

newName String; the new name of the file.

Returns

Nothing.

Description

Method; changes the name of an existing file in the local Internet cache. The file must have write
permission to call this method.

For more information about moving or renaming files that exist outside of the local Internet
cache, see “FileReference.saveAs()” on page 263 and “FileReference.move()” on page 250.

FileReference.saveAs()

Availability

Macromedia Central 1.5

Usage

fileRef.saveAs([otherFileRef]);

Example

var fileRef = new FileReference();

// create a temporary version of the file
FileReference object 263

fileRef.create("vars.txt");
fileRef.writeString("lastDocument=spinach.txt");

// prompt the user to save the file
fileRef.saveAs();

Parameters

otherFileRef FileReference; an optional destination for the new file.

Returns

A Boolean value; indicates whether the saveAs succeeded, or failed due to a file error or the user
cancelling the operation.

Description

Method; makes a copy of a file and saves it to a new location. If the otherFileRef parameter is
omitted, Central prompts the user for a destination for the new file. If the otherFileRef
parameter is included, Central prompts the user for permission to save the file in the new
location.

This method can be used to create or overwrite files outside of the local Internet cache. The
following example demonstrates how to modify a file outside of the cache.
var fileRef1 = new FileReference();
if (fileRef1.browse())
{

// the local name of the file in the local Internet cache
var localName = fileRef1.name;

// make a copy in the cache
fileRef1.copyIntoCache(localName);

// open the newly copied file
var fileRef2 = new FileReference();
fileRef2.open(localName);

// write some data
fileRef2.writeString("buildID=14");

// now copy the updated file back to
// the original location outside the cache
fileRef2.saveAs(fileRef1)

}

For more information about changing files outside of the local Internet cache, see
“FileReference.copyIntoCache()” on page 244.
264 Chapter 10: API Reference

FileReference.setPosition()

Availability

Macromedia Central 1.5

Usage

fileRef.setPosition(newPosition);

Example

// read the specified record number and return it in a byte array
function readRecord(fileRef, recordNumber) {

if (fileRef.setPosition(recordNumber * gRecordSize))
return fileRef.readBytes(gRecordSize);

return null;
}

Parameters

newPosition Number; the current read or write offset from the beginning of the file, in bytes.

Returns

A Boolean value: true indicates that the setPosition() method was successful; otherwise
false.

Description

Method; sets the current read or write position in a file. It is commonly used to provide random
access to a binary file.

The newPosition parameter is always an absolute value from the beginning of the file. To set
relative position, use the getPosition() method in conjunction with the setPosition()
method.

For example, the following code rewinds 10 bytes in a file:
fileRef.setPosition(fileRef.getPosition() - 10);

The setPosition() method affects future calls to readBytes(), readString(),
writeBytes(), and writeString().

FileReference.size

Availability

Macromedia Central 1.5

Usage

fileRef.size

Example

// retrieve the size of a file chosen by the user
var fileRef = new FileReference();
if (fileRef.browse(["JPEG files", "*.jpg"])) {

trace("File is " + fileRef.size + " bytes");
}

FileReference object 265

Description

Number; a property that indicates the size of the file, in bytes.

FileReference.type

Availability

Macromedia Central 1.5

Usage

fileRef.type

Description

String; a property that represents the file extension of the filename on Windows, and the four-
character file type on the Macintosh. This property is read-only on Windows. It is writable on the
Macintosh and can be used to change the file type of a file.

FileReference.upload()

Availability

Macromedia Central 1.5

Usage

fileRef.upload(remoteURL);

Example

var listener = new Object();
listener.onUploadSuccess = function(fileRef, response) {

trace("Upload of "+ fileRef.name + "complete");
trace("Server response was "+ response);

}

var fileRef = new FileReference();

// ask the user to choose a file to upload
if (fileRef.browse(["Text Files", "*.txt"])) {

fileRef.addListener(listener);
fileRef.upload("http://www.mysite.com/upload.cgi");

}

Parameters

remoteURL String; specifies the URL that will receive an HTTP POST of the file.

Returns

Nothing.

Description

Method; uploads a file to a remote server. The FileReference object must be initialized before the
call to the upload() method.The call to the upload() method returns immediately.
266 Chapter 10: API Reference

To track the progress and completion of the upload operation, an application should use an event
listener object to receive event notifications. The following notifications are sent during the
upload operation:

Applications should use the onUploadProgress event solely to provide visual feedback to the
user, and should not make any assumptions about the order of these events. The
onUploadProgress events may occur before, between, or after onUploadStart and
onUploadSuccess events.

FileReference.writeBytes()

Availability

Macromedia Central 1.5

Usage

fileRef.writeBytes(byteArray);

Example

// data is an array of binary data
var data = new Array(25, 200, 255);

// create and initialize the FileReference
var fileRef = new FileReference();
fileRef.create("data.dat");

// write the data to disk
fileRef.writeBytes(data);

Parameters

byteArray Array of numbers; represents the byte value to be written.

Returns

A Boolean value that indicates the success or failure of the operation. The value true means that
the write operation succeeded.

Description

Method; writes an array of Numbers to the file. The values in the array must range from 0 to 255.
This method is commonly used to write binary data to disk to later be read by
FileReference.readBytes().

See also “FileReference.writeString()” on page 268.

Event Description

FileReference listener.onUploadStart The upload operation has begun.

FileReference listener.onUploadProgress Some data has been uploaded.

FileReference listener.onUploadSuccess The upload operation has finished without an error.

FileReference listener.onUploadFailed The upload operation failed.
FileReference object 267

FileReference.writeString()

Availability

Macromedia Central 1.5

Usage

fileRef.writeString(str);

Example

var fileRef = new FileReference();

// write data to a local file
fileRef.create("data.txt");
fileRef.writeString("enable=true\n");

Parameters

str String; a string to write to the file.

Returns

A Boolean value that indicates the success or failure of the operation. The value true means that
the write operation succeeded.

Description

Method; writes a string to the file. It does not write any line terminators, so the application must
include line terminators if it is writing to a text file.

See also “FileReference.writeBytes()” on page 267.

FileReferenceList object

ActionScript Class Name FileReferenceList

FileReferenceList is a container class that allows the user to select multiple files from the local
disk. The FileReferenceList.browse()method is used to prompt the user to select a set of files.
These files are accessible through the FileReferenceList.fileList property.

Method summary for the FileReferenceList object

Property summary for the FileReferenceList object

Method Description

FileReferenceList.browse() Prompts the user to browse for a set of files.

Property Description

FileReferenceList.fileList An array of the files chosen by the user.
268 Chapter 10: API Reference

Event handler summary for the FileReferenceList object

Constructor for the FileReferenceList object

Availability

Macromedia Central 1.5

Usage

fileRefList = new FileReferenceList();

Example

var fileRefList = new FileReferenceList();
if (fileRefList.browse(["Images", "*.jpg;*.gif;*.png", "Flash Movies",

"*.swf"])) {
trace("User chose "+ fileRefList.fileList.length + "files");

} else {
trace("User cancelled");

}

Parameters

None.

Returns

A FileReferenceList object.

Description

Constructor; creates the FileReferenceList object. The FileReferenceList object cannot be used
until FileReferenceList.browse() is called to populate the fileList property.

FileReferenceList.browse()

Availability

Macromedia Central 1.5

Usage

fileRefList.browse([typelist]);

Example

var fileRefList = new FileReferenceList();
if (fileRefList.browse(["Images", "*.jpg;*.gif;*.png", "Flash Movies",

"*.swf"])) {
for (var i=0; i<fileRefList.fileList.length; i++) {

trace("Selected " + fileRefList.fileList[i].name);
}

} else {
trace("User cancelled");

}

Event handler Description

None.
FileReferenceList object 269

Parameters

typelist Array of strings; describes the list of file types that the application can accept from
the user.

Returns

A Boolean value; true if the user chose at least one file; false if the user did not choose any files.

Description

Method; prompts the user to choose one or more files. For more information about the typelist
parameter, see “FileReference.browse()” on page 241. When the user has chosen a set of files, the
FileReferenceList.fileList property holds those files.

FileReferenceList.fileList

Availability

Macromedia Central 1.5

Usage

files = FileReferenceList.fileList

Example

var fileRefList = new FileReferenceList;
if (fileRefList.browse(["Text files", "*.txt"])) {

// upload each file
for (var i=0; i<fileRefList.fileList.length; i++) {

var fileRef = fileRefList.fileList[i];

// use the same listener object on each file
fileRef.addListener(uploadListener);

// now submit the file
fileRef.upload("http://www.mysite.com/submit-files.cgi");

}
}

Description

Array; a property that contains an array of FileReference objects that the user has chosen using
FileReferenceList.browse().
270 Chapter 10: API Reference

LCDataProvider object

ActionScript Class Name mx.central.data.LCDataProvider

LCDataProvider is an implementation of the DataProviderClass object. Traditionally, you create a
DataProviderClass (containing the source data) that gets linked to a component instance onscreen
(such as the DataGrid or List). When the data changes, the component instance reflects the
changes. The LCDataProvider is used for the same purpose, except that the components can
reside in your application or any of your pods, while the data remains in one place ,such as in an
agent. Once you set up the structure, the native Central ActionScript handles all the work
through LocalConnections.

Note: This data provider is different from the regular DataProvider with Flash MX 2004 and previous
versions of the Macromedia developer resource kits (DRKs).

Like the LCService object, LCDataProvider objects use a client/server metaphor. The data resides
in the Server side LCDataProvider instance (which should be implemented by your agent) and
each Client LCDataProvider instance (in your application and pods) automatically communicate
with the Server side. Changes you make to the data automatically propagate through the server
and to all LCDataProvider Clients.

Creating the client and server parts of an LCDataProvider object is similar to the LCService
object, but does not require the developer to specify an interface. (An interface is a list of
supported methods.) The interface is predefined, as it supports all standard DataProviderClass
functions (except custom sorts using sort(compareFunction), which is not supported).

The LCDataProvider Server object has the additional setData() function that you use to
populate the DataProviderClass with an array or with another DataProvider.

The Central implementation of the LocalConnection object (LCService and LCDataProvider)
executes calls synchronously. This means that you can call a Client LCDataProvider getItemAt()
and get the result returned immediately, just like a normal DataProvider.

When an application’s onDeactivate() method is called, all open LCDataProvider objects
should be destroyed by calling delete.

Method summary for the LCDataProvider object

The following table summarizes the methods for the LCDataProvider object:

Method Description

LCDataProvider.addItem() Adds a single item, item, to the end of the list of
items.

LCDataProvider.addItemAt() Adds a single item at a specific index in the list of
items.

LCDataProvider.addItems() Adds a set of item objects to the end of the list of
items. This set can be either an array of objects
(ordered) or an object of objects (unordered).

LCDataProvider.addItemsAt() Adds a set of item objects to a specific index in the
list of items.
LCDataProvider object 271

LCDataProvider.addListener() Passes a reference to an object that is added to the
LCDataProvider._listeners array, and determines
whether to call the object’s modelChanged event.

LCDataProvider.close() Frees the communication resources associated
with an LCDataProvider object.

LCDataProvider.createClient() Creates an instance of the client side version of an
LCDataProvider. The name you supply needs to
match the name used by your agent when it called
createServer().

LCDataProvider.createServer() Creates an instance of a named LCDataProvider
to which components in your application and pods
can subscribe.

LCDataProvider.getAllItems() Returns the entire items array. This method returns
only a reference to the actual
LCDataProviderInstance.items array.

LCDataProvider.getIndexByKey() Returns the index of the first item (starting from the
beginning of the list) whose property indicated by
key matches the value passed in.

LCDataProvider.getIndicesByKey() Returns an array of indexes for items whose
property specified by key matches value.

LCDataProvider.getItemAt() Returns the item at index.

LCDataProvider.getItemByKey() Returns the first item object found whose property
specified in key matches value.

LCDataProvider.getItemID() Returns the value of the item._ID_ property found
at index.

LCDataProvider.getItemsByKey() Returns an array of objects whose property
specified in key matches value.

LCDataProvider.getLength() Returns the total number of items in the data
provider.

LCDataProvider.getSortState() Returns a sort object with two string properties:
sortField and order.

LCDataProvider listener.modelChanged() Broadcasts when the data provider changes

LCDataProvider.removeAll() Removes all items in the data provider.

LCDataProvider.removeItemAt() Removes the item at index and returns it.

LCDataProvider.removeListener() Searches the _listeners array for the reference
passed in, and removes it if found.

LCDataProvider.replaceAllItems() Deletes and replaces all of the items in the
LCDataProvider instance.

LCDataProvider.replaceItemAt() Overwrites an item at the specified index with a
new item object.

Method Description
272 Chapter 10: API Reference

Events for the LCDataProvider object

By extending the LCDataProvider object and overriding the updateView method, you can make
the data provider broadcast to any method you define. All components listen for modelChanged
events, so you must broadcast to the modelChanged event, or your implementation will not work
with existing components. To broadcast to a different method, pass in an eventObject as
described next for the modelChanged event:

Example

The server side (your agent) is where you name and structure the source LCDataProvider and,
optionally, populate it with initial data. The following is an example from the agent:
onActivate=function(agentManager, agentID)
{

//create an LCDataProvider instance to store in the myDP variable
this.myAlbums = mx.central.data.LCDataProvider.createServer("my_albums");
var albums = ["Debut", "Greatest Hits", "Features"];
this.myAlbums.setData(albums);

}

LCDataProvider.setData() Used by either the client or server to identify the
source data. Replace "LCDataProvider" with the
name of the variable you’re using to hold the
instance of the LCDataProvider (myAlbums in the
examples above).

LCDataProvider.setItemByKey() Overwrites an existing item object using the key of
any existing item property.

LCDataProvider.sort() Sorts the items using a custom function, similar to
Array.sort, but lets you pass in additional
arguments to persist and retrieve user-driven sort
selections.

LCDataProvider.sortItemsBy() Sorts the items in the specified order, using the
built-in Array.sortOn method with the item property
specified in key.

LCDataProvider.updateItem() Overwrites an existing item object with a new item
object.

LCDataProvider.updateItemByIndex() Overwrites an existing item object at index with a
new item object.

LCDataProvider.updateView() Broadcasts events, other than the modelChanged
event, for any objects that extend the
LCDataProvider object. This method is called for
each _listener that is added when the
LCDataProvider instance triggers an event.

Event Description

DataProviderClass listener.modelChanged() Broadcasts when the data provider changes.

Method Description
LCDataProvider object 273

onDeactivate=function()
// clean up server connection
delete this.myAlbums;

};

The client side (pod or application) needs to create an LCDataProvider instance by passing both a
unique string identifier for itself (in this case, by combining the second and third parameters
received in onActivate()), as well as the same name the server used when creating itself (in this
case, "my_albums"). The following code shows how the client can then link components to the
data, as well as make changes to the source data:
onActivate = function(shell, appID, shellID)
{

this.myID = appID+"_"+shellID;
myAlbums = mx.central.data.LCDataProvider.createClient(this.myID,
"my_albums");
myComboBox.dataProvider = myAlbums;
sListBox.dataProvider = myAlbums;

sMyAddButton.onRelease = onMyAddPress;
};

onDeactivate = function()
{

// clean up client connection
delete this.myAlbums;

};

onMyAddPress = function()
{

myAlbums.addItem(this.myInputField_txt.text);
};

LCDataProvider.addItem()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

addItem(item)

Parameters

item An object; the item to add.

Returns

Nothing.
274 Chapter 10: API Reference

Description

Method; adds a single item, item, to the end of the list of items. If the item has a property named
ID, that property is overwritten with a new, unique value.

Example

The following example creates an LCDataProvider client object, populates it with 6 initial items,
and sets the dataProvider property of two components to LCDataProvider client object:
var myID:String;
var myDP:mx.central.data.LCDataProvider;
var myDataGrid:mx.controls.DataGrid;
var myList:mx.controls.List;

function onActivate(shell:mx.central.Shell, appID:Number, shellID:Number,
baseTabindex:Number, initiaData:Object):Void

{
this.myID = appID+"_"+shellID;
this.myDP = mx.central.data.LCDataProvider.createClient(this.myID, "my_dp");

setData();

this.myDataGrid.dataProvider = myDP;
this.myList.dataProvider = myDP;

}

function setData(Void):Void {
// adds 6 initial items
for (var i=0; i<6; i++) {

this.myDP.addItem({label:"Item "+i, data:i});
}

}

LCDataProvider.addItemAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

addItemAt(index, item)

Parameters

index The index at which to add the item.

item The item to add.

Returns

Nothing.
LCDataProvider object 275

Description

Method; adds a single item at a specific index in the list of items. If the item has a property named
ID, that property is overwritten with a new, unique value.

Example

The following example adds an item to the data provider myDP at the fourth position:
myDP.addItemAt(3, {label:"this is the fourth Item", data:4});

LCDataProvider.addItems()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

addItems(items)

Parameters

items An array of objects (ordered) or an object of objects (unordered).

Returns

Nothing.

Description

Method; adds a set of item objects to the end of the list of items. This set can be either an array of
objects (ordered) or an object of objects (unordered). Either way, the items are stored in a specific
order once added. If any item has a property named _ID_, that property is overwritten with a
new, unique value.

Example

The following example creates an LCDataProvider client object, populates it with 3 initial items
from an array, and sets the dataProvider property of two components to LCDataProvider client
object:
var myID:String;
var myDP:mx.central.data.LCDataProvider;
var myDataGrid:mx.controls.DataGrid;
var myList:mx.controls.List;

function onActivate(shell:mx.central.Shell, appID:Number, shellID:Number,
baseTabindex:Number, initiaData:Object):Void

{
this.myID = appID+"_"+shellID;
this.myDP = mx.central.data.LCDataProvider.createClient(this.myID, "my_dp");

setDataFromArray();
276 Chapter 10: API Reference

this.myDataGrid.dataProvider = myDP;
this.myList.dataProvider = myDP;

}

function setDataFromArray(Void):Void {
// adds 3 initial items
var aItems:Array = [{ label:"Item 1", data:1 },

 { label:"Item 2", data:2 },
 { label:"Item 3", data:3 }];

this.myDP.addItems(aItems);
}

LCDataProvider.addItemsAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

addItemsAt(index, items)

Parameters

index The number at which to add the items.

items An array of objects (ordered) or an object of objects (unordered).

Returns

Nothing.

Description

Method; adds a set of item objects to a specific index in the list of items. If any item has a
property named _ID_, that property is overwritten with a new, unique value.

Example

The following code provides an example of how to populate a data provider and use the
addItemsAt() method:
var myID:String;
var myDP:mx.central.data.LCDataProvider;
var myDataGrid:mx.controls.DataGrid;
var myList:mx.controls.List;

function onActivate(shell:mx.central.Shell, appID:Number, shellID:Number,
baseTabindex:Number, initiaData:Object):Void

{
this.myID = appID+"_"+shellID;
this.myDP = mx.central.data.LCDataProvider.createClient(this.myID, "my_dp");

setData();
LCDataProvider object 277

this.myDataGrid.dataProvider = myDP;
this.myList.dataProvider = myDP;

addDataFromArray();
}

function setData(Void):Void {
// adds 6 initial items
for (var i=0; i<6; i++) {

this.myDP.addItem({label:"Item "+i, data:i});
}

}
// adds three more items to the list
function addDataFromArray(Void):Void {

var aItems:Array = [{ label:"Item 6", data:6 },
 { label:"Item 7", data:7 },
 { label:"Item 8", data:8 }];

this.myDP.addItemsAt(6, aItems);
}

LCDataProvider.addListener()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

addListener(view [,doNotUpdate])

Parameters

view A reference to an object.

doNotUpdate A Boolean value. If true, the item’s modelChanged event is not triggered. If null,
undefined, or false, a modelChanged event is triggered on the referenced object.

Returns

Nothing.

Description

Method; passes a reference to an object that is added to the LCDataProvider._listeners array,
and determines whether to call the object’s modelChanged event.

If doNotUpdate is true, the item’s modelChanged event is not triggered. If doNotUpdate is null,
undefined, or false, this method triggers a modelChanged event on the reference. An event
object with an event of “updateAll” is passed to the modelChanged event.

Note: In Central 1.5 you can add a listener to an LCDataProvider server object using the
addListener() method, but the listener object does not receive modelChanged events afterwards. If
your agent needs event listening capability you can create a subclass of the LCDataProvider class
and add your own event dispatching capabilities to the subclass.
278 Chapter 10: API Reference

LCDataProvider.close()

Availability

Macromedia Central Player 1.5.

Edition

Macromedia Central SDK 1.5.

Usage

close()

Parameters

None.

Returns

Nothing.

Description

Method; frees the communication resources associated with an LCDataProvider object. The
close() method should be called in the onDeactivate() method of an application, agent, or pod,
for the client and server sides of each LCDataProvider.

Example

The following example shows how to use the close() method within an onDeactivate()
method. The variable myDP represents an LCDataProvider client object.
function onDeactivate(Void):Void
{

this.myDP.close();
}

LCDataProvider.createClient()

Availability

Macromedia Central.

Usage

LCDataProviderInstance = mx.central.data.LCDataProvider.createClient(
clientID, name);

Parameters

clientID String; to uniquely identify this client. Use a combination of the second and third
parameters received in your onActivate() callback.

name String; the same name passed when the server calls createServer().

Returns

An instance of the LCDataProvider object (client version).
LCDataProvider object 279

Description

LCDataProvider method; creates an instance of the data provider client. You should call this
method from inside the onActivate() callback in your application and pods. You will want to
save the reference returned from this method in a variable. You can use this variable to set the
dataProvider property of your components. If you want to modify the source data, just modify
the variable as if it was the original data. For example, to add an item, use
LCDataProviderInstance.addItem(), or to sort, use LCDataProviderInstance.sort(). All
subscribing components (in any application or pod) get updated automatically.

LCDataProvider.createServer()

Availability

Macromedia Central.

Usage

LCDataProviderInstance = mx.central.data.LCDataProvider.createServer(name);

Parameters

name String; the globally unique name of this data provider.

Returns

An instance of the LCDataProvider object (server version).

Description

LCDataProvider method; creates an instance of the data provider server. Call this method from
inside the onActivate() callback method in your agent. The createClient() method calls
from your application and pods need to provide the same name used in your createServer()
call.

You will want to save the reference returned from this method in a variable. This variable is used
to populate and modify the source data. The underlying data type of an LCDataProvider is a
specialized version of an array. You can initialize the variable the same way as an array. However,
when you want to add an item, don’t use push(); use addItem() instead. Components expect
each item in an LCDataProvider array to contain an object with properties for label and data.
By creating even more complex data structures (basically, arrays that contain ActionScript objects
with several properties), you can use the DataProvider to populate the DataGrid component or
other components of your own design.

For more information about the DataProvider interface, see the Macromedia Flash
documentation.
280 Chapter 10: API Reference

LCDataProvider.getAllItems()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

getAllItems()

Parameters

None.

Returns

A reference to an array.

Description

Method; returns the entire items array. This method returns only a reference to the actual
dataProviderInstance.items array. Any changes made directly to the returned array will likely
cause problems in the data provider. Use this accessor method for read-only purposes.

Example

The following example traces the reference returned:
trace(getAllItems());

LCDataProvider.getIndexByKey()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

getIndexByKey(key, value)

Parameters

key A string, such as a property or label.

value A primitive data type value.

Returns

An integer, or, if no items are found, -1.

Description

Method; returns the index of the first item (starting from the beginning of the list) whose
property indicated by key matches the value passed in.
LCDataProvider object 281

Example

The following example gets the index of the item added:
// adds two items to the list
someDp.addItem({category:"recipes", name:"salads"});
someDp.addItem({category:"recipes", name:"desserts"});

// returns the index of the first item encountered with the matching key/value
pair

var myIndex = someDp.getIndexByKey("category", "recipes");
trace(myIndex);

LCDataProvider.getIndicesByKey()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

getIndicesByKey(key, value)

Parameters

key A string, such as a property or label.

value A primitive data type value.

Returns

An array of indexes or, if no items are found, an empty array.

Description

Method; returns an array of indexes for items whose property specified by key matches value.

Example

The following example gets the indexes of the items added:
// adds two items to the list
someDp.addItem({category:"movies", name:"thrillers"});
someDp.addItem({category:"movies", name:"comedies"});

// returns the indexes of the first item encountered with the matching key-
value pair

var myIndexes = someDp.getIndexByKey("category", "movies");
trace(myIndexes);
282 Chapter 10: API Reference

LCDataProvider.getItemAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

getItemAt(index)

Parameters

index The index of the item to get.

Returns

An object, or, if an invalid index is used, undefined.

Description

Method; gets the item at index and returns the item.

Example

The following code adds two items to the list and gets the second item:
myDp.addItem("label0", "data0");
myDp.addItem("label1", "data1");
var myItem:Object = myDp.getItemAt(1);

LCDataProvider.getItemByKey()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

getItemByKey(key, value)

Parameters

key A string, such as a property or label.

value A primitive data type value.

Returns

An object or, if no item is found, null.

Description

Method; returns the first item object found whose property specified in key matches value.
LCDataProvider object 283

Example

The following example adds two items and returns the first item:
myDp.addItem({category:"circus", name:"tiger"});
myDp.addItem({category:"circus", name:"lion"});
// returns the first object that matches the property key
// (in this case, the item named "tiger")
var myItem:Object = myDp.getItemByKey("category", "circus");

LCDataProvider.getItemID()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

getItemID(index)

Parameters

index The index of the item whose index is retrieved.

Returns

A string.

Description

Method; returns the value of the item._ID_ property found at index. The returned value is a
string data type but can be evaluated to a number.

Example

The following example gets the ID of the third item in the list:
var itemID:String = getItemID(2);

LCDataProvider.getItemsByKey()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

getItemsByKey(key, value)

Parameters

key A string.

value A primitive data type value.
284 Chapter 10: API Reference

Returns

An array of objects, or, if no items are found, an empty array.

Description

Method; returns an array of objects whose property specified in key matches value. The items
returned are in the same order (relative to one another) as in the data provider.

Example

The following example adds two items to the list and returns them both:
// returns both objects that match the property key
myDp.addItem({category:"hobbit", name:"Frodo"});
myDp.addItem({category:"hobbit", name:"Bilbo"});
var matchingItems:Array = myDp.getItemsByKey("category", "hobbit");

LCDataProvider.getLength()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

getLength()

Parameters

None.

Returns

An integer.

Description

Method; returns the total number of items in the data provider.

Example

The following example traces the total number of items in the list:
var qty:Number = myDp.getLength();
trace("There are " + qty + " items in the list.");

LCDataProvider.getSortState()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.
LCDataProvider object 285

Usage

getSortState()

Parameters

None.

Returns

A sort object with two string properties.

Description

Method; returns a sort object with two string properties, sortField and order:

• sortField is the property name last used for sorting or last passed to the sort method.
• order is the order property. Its value depends on what, if anything, was last passed to the

sort() or sortItemsBy() methods. Possible values are "ASC", "DESC", the value undefined;
or an empty string, "".

If the properties have no value, they will show as empty strings.

Example

The following example gets and displays the current sort state values, where myDP represents a
LCDataProvider server object:
var sortObject:Object = this.myDP.getSortState();
trace("sortField=" + sortObject.sortField);
trace("order=" + sortObject.order);

LCDataProvider listener.modelChanged()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

listenerObject = new Object();
listenerObject.modelChanged = function(eventObject){
 // insert your code here
}
myDataProvider.addListener(listenerObject)

Parameters

eventObject An object with additional properties.

Returns

Nothing.
286 Chapter 10: API Reference

Description

Event; broadcasts when the data provider changes. The modelChanged() method is not a method
of the LCDataProvider; it is a function called by the LCDataProvider on an object registered as a
view or listener object.

The eventObject object has the following properties:

• source A reference back to the data provider instance that initiated the event.
• event A string identifying the type of change made so that any listening views can perform

granular updates. The following strings are possible values: "updateAll", "updateRows",
"deleteRows", "sort", or "addRows".

• firstRow The number of the first row affected by the change.
• lastRow The number of the last row affected by the change.

Note: The firstRow and lastRow parameters are the same if only one row was affected. They are
omitted if the event is "sort" or "updateAll".

LCDataProvider.removeAll()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

removeAll()

Parameters

None.

Returns

Nothing.

Description

Method; removes all items in the data provider.

Example

The following code removes all items:
myDp.removeAll();
LCDataProvider object 287

LCDataProvider.removeItemAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

removeItemAt(index)

Parameters

index The index of the item to remove.

Returns

An object.

Description

Method; removes the item at index, and returns the removed item.

Example

The following code removes the third item in the list:
var removedItem:Object = myDp.removeItemAt(2);

LCDataProvider.removeListener()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

removeListener(listenerObj)

Parameters

listenerObj A reference to an object.

Returns

Nothing.

Description

Method; searches the _listeners array for the reference passed in, and removes it if found.

Example

The following code removes the listener from the LCDataProvider instance named myDp:
myDp.removeListener(myListener);
288 Chapter 10: API Reference

LCDataProvider.replaceAllItems()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

replaceAllItems(items)

Parameters

items An array of objects (ordered) or an object of objects (unordered).

Returns

Nothing.

Description

Method; deletes all of the items in the list and replaces them with the items specified in the items
parameter.

LCDataProvider.replaceItemAt()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

replaceItemAt(index, itemObj)

Parameters

index The index of the item to be replaced.

itemObj An object. If the itemObj parameter is not typeof "object", then the argument is
assigned to the item's label property instead of replacing the whole item (this behavior is slightly
different than the LCDataProvider.updateItemByIndex() method).

Returns

Nothing.

Description

Method; overwrites an item at the specified index with a new item object. If the item passed in
has an _ID_ property, that property is overwritten with a new one.
LCDataProvider object 289

Example

The following example overwrites the object at index location 3 with an object containing values
for the properties "category" and "name":
myDp.replaceItemAt(3, {category: "circus" , name: "lion"});

LCDataProvider.setData()

Availability

Macromedia Central.

Usage

setData(uniqueArray);

Parameters

uniqueArray Array; contains the source initial data for your data provider. Each item must have
the same structure. Strings or numbers are acceptable. When your array contains ActionScript
objects, each must have matching named properties.

Returns

Nothing.

Description

LCDataProvider method; use once to identify the structure for the LCDataProvider. It’s easiest to
use setData() to also populate the LCDataProvider with its initial data too, because that
establishes the structure as well. That is, the structure matches whatever form the initial data has.
The main thing is that you call setData() once to point to the form that the DataProvider is to
take.

Example

The following example uses the setData() method to associate the array with the
LCDataProvider instance:
//for your agent:
onActivate=function(agentManager, agentID)
{

//create an LCDataProvider instance to store in the myDP variable
this.myDP = mx.central.data.LCDataProvider.createServer("my_data");
//create and populate an array with identical Objects
var myArray = [];
myArray.push({first:"George", last:"Bush", gender:"MALE"});
myArray.push({first:"Bill", last:"Clinton", gender:"MALE"});
myArray.push({first:"Margaret", last:"Thatcher", gender:"FEMALE"});

//associate
this.myDP.setData(myArray);

};

//for your client
onActivate=function(shell, appID, shellID)
290 Chapter 10: API Reference

{
//create a unique ID
this.myID = appID+"_"+shellID;

//create an LCDataProvider instance to store in the myDP variable
myDP = mx.central.data.LCDataProvider.createClient(myID, "my_data");

//link up an MDataGrid instance
myDataGrid.dataProvider = this.myDP;

//make a button to add items to DataProvider via input text fields
add_btn.onPress=function()
{

var theItem={first: first_txt.text,
last: last_txt.text,
gender: gender_txt.text};

myDP.addItem(theItem);
};

};

LCDataProvider.setItemByKey()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

setItemByKey(key, item)

Parameters

key A string.

item An object.

Returns

The index of the overwritten item.

Description

Method; overwrites an existing object in the data provider with the item object provided. The
object to be overwritten is chosen by finding the first item with a key property whose value
matches the provided item object's key property value.

In addition, the item object that is provided must contain a property named __ID__ whose value
that matches the internally-assigned __ID__ value of the item to be replaced.

Note: This method is primarily for internal use and might be deprecated in the future.
LCDataProvider object 291

Example

The following code adds an item and then overwrites the same item using the setItemByKey()
method:
myDP.addItem({label:"bear", name:"Grizzly"});

var index:Number = myDP.setItemByKey("label", {label:"bear", name:"Teddy",
__ID__:0});

LCDataProvider.sort()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

sort(sortFunction[,key, order])

Parameters

sortFunction A function.

key A string that should correspond to the name of an item property that you have defined.

order A string, "ASC" for ascending order or "DESC" for descending order.

Returns

Nothing.

Description

Method; sorts the items in a list using a custom function, similar to Array.sort(), but lets you
also pass in the additional key and order parameters which will be stored by the LCDataProvider
object and which can be retrieved later using the getSortState() method.

The key and order parameters are not passed to the specified sortFunction. The ordering of
the items is performed in a second pass after the sortFunction has completed.

The sort() method can only be used on a LCDataProvider server object (which is usually
created and managed in an agent). The sort() method will not work on an LCDataProvider
client object.

Note: This method uses ActionScript to execute the sort, which is inherently slow. For large data
sets, you might want to use the sortItemsBy method, which uses the native C++ implementation of
the Array.sortOn method.

Example

The following code sorts the list by the name property in ascending order, using a predefined sort
function named mySortFunction:
myDp.sort(mySortFunction, "name", "ASC");
292 Chapter 10: API Reference

LCDataProvider.sortItemsBy()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

sortItemsBy(key, order)

Parameters

key A string that should map to an item property that you have defined.

order A string, "ASC" for ascending order, or "DESC" for descending order.

Returns

Nothing.

Description

Method; sorts the items in the specified order, using the built-in Array.sortOn method, with the
item property specified in key.

This method works only for items that have a primitive data type in the specified key.

Note: This method uses the native C++ implementation of the Array.sortOn method. That
implementation sorts items by their ASCII codes, which means that all lowercase characters appear
before uppercase characters. For example, lowercase “z” is placed before uppercase “A”. To sort in
proper alphabetical order, you can create a new item property that has each item in uppercase letters,
and sort on that property. This implementation will likely be faster than using a custom sort function.

Example

The following example sorts items by their name property in ascending order:
myDp.sortItemsBy("name", "ASC");

LCDataProvider.updateItem()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

updateItem(item)

Parameters

item The existing object that overwrites the internal item.
LCDataProvider object 293

Returns

The index into which the item was passed.

Description

Method; passes an existing item object to the data provider to overwrite an internal item with the
same _ID_ property.

LCDataProvider.updateItemByIndex()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

updateItemByIndex(index, item)

Parameters

index The index of the item to be overwritten.

item The new item object.

Returns

The index of the overwritten item.

Description

Method; overwrites the existing item object at index with a new item object. If the item object
passed in does not have an _ID_ property, an _ID_ property is added to the new item object.

LCDataProvider.updateView()

Availability

Macromedia Central Player.

Edition

Macromedia Central SDK.

Usage

updateView(view, eventObject)

Parameters

view A reference to an object.

eventObject A valid event object.

Returns

Nothing.
294 Chapter 10: API Reference

Description

Method; broadcasts the modelChanged event to all registered listeners on the current side of the
LCDataProvider connection. For example, if the updateView() method is called on an
LCDataProvider client object, the modelChanged event will be broadcast to every listener that
was explicitly added to that client object.

The method called on each listener is:
view.modelChanged(eventObject:Object);

Note: This method does not broadcast the modelChanged event from a client object to a server
object, or vice versa. Listeners on both sides of the LCDataProvider connection will normally receive
modelChanged events when data is changed using the DataProvider API methods such as
addItem() and removeItem().

LCService object

ActionScript Class Name mx.central.data.LCService

The LCService object provides a multiplexing service, which means that it can manage multiple
requests called from and responses sent to the elements in your application (agent, application,
and pods). The LCService object insulates you from the work involved to overcome several
particularly difficult limitations in the traditional Local Connection object. Specifically,
LCService requests can be made synchronously, which means that the response gets returned
immediately (instead of needing to first define a callback, as is the case with the asynchronous
behavior in regular Local Connection objects). Additionally, the LCService object alleviates you
from managing a unique channel name for each element’s sends and responses. For example, an
agent, application, and pod normally need six unique channel names to pass messages among the
pieces. The LCService object greatly simplifies this by letting you identify a single channel for all
pieces.

In practice, this means that you can store code that’s shared among your application elements in
one place. The agent can manage the global methods, and each application or pod instance can
have its own implementation of their own methods. A client/server metaphor is used (like the
LCDataProvider object). Your agent is the server, and each application and pod is a client. The
basic approach is to identify the methods that will reside in the agent (that is, server) and the
methods residing in the application and pods (the clients). Clients can call methods in the server
and the server can trigger methods in the clients. These methods can also gracefully pass data
back. In the end, one element in your application can trigger code that resides in another element
nearly as easy as it can trigger code in its own file. In the most simple sense, this means that your
code doesn’t need to be duplicated, which makes it easier to manage and troubleshoot.

Because you can have several instances of clients (application and pods), the code you designate as
residing in the client will be duplicated. Normally, you just store common code in one place—the
server. However, defining methods that reside in the client gives you the opportunity to have each
piece implement the same named method in its own manner. For example, when the server says
"doTheMethod()", your application could do one thing and the pod something else.
LCService object 295

There are three pieces to LCService: the server, the client, and the interface. The interface is
simply the list of methods you plan to use for the server and the list for the client. The interface
defines how the client and server interface with each other. Because clients and servers need an
identical interface, you should create a script file, as in the following procedure, and use #include
so that each element (agent, application, pod) can point to the same source.

To use LCService:

1. Create an interface object by putting the following code into a text file named interface.as, so
that each file can share it (using #include). Store in a variable an ActionScript object with the
properties name (containing a string) and interfaces (containing another object with the
properties Client and Server, which both contain an array of strings matching your method
names):
myInterface = new Object();
myInterface.name = "myInterfaceName";
myInterface.interfaces = new Object();

myInterface.interfaces.Client = ["clientMethod1"];
myInterface.interfaces.Server = ["serverMethod1", "serverMethod2"];

2. In the server (that is, the agent SWF file), define methods that match the names used in the
preceding step, as you would normally, as follows:
this.serverMethod1=function(param)
{

return "server heard you say "+param;
};
this.serverMethod2=function()
{

//perform some task
};

3. In the clients (that is, the application and pod files), define methods that match the names used
previously, as you would normally. The following code shows two different implementations—
one for the application and one for the pod:
//in the application
this.clientMethod1=function(param)
{

gShell.setStatus(param);
message_txt.text="Server said "+param;

};
//in the pod
this.clientMethod1=function(param)
{

message_txt.text="Pod heard server say "+param;
};

4. Define the server side in your agent by calling
mx.central.data.LCService.createServer(), as follows:
//make sure the myInterface variable gets set first
#include "interface.as"

onActivate=function()
296 Chapter 10: API Reference

{
//first parameter is the variable containing the interface object
//second parameter is the object where the method definitions can be found
//third parameter specifies we want the LCService to be synchronous
myService=mx.central.data.LCService.createServer(myInterface, this, true
);

};

5. Define the client side in your application and pods by calling LCService.createClient(), as
follows:
//make sure the myInterface variable gets set first
#include "interface.as"

onActivate=function(shell, appID, shellID)
{

//create a unique ID
myID = appID+"_"+shellID;

//first parameter is the variable containing the interface object
//second parameter is a unique string for this application/pod instance
//third parameter is the object where the method definitions can be found
//third parameter specifies we want the LCService to be synchronous

myService=mx.central.data.LCService.createClient(myInterface, myID, this,
true);

};

6. The client can call server methods by preceding the function names with a reference to the
LCService instance created, as follows:
//trigger one with a return value expected
message_txt.text=myService.serverMethod1("some value");

//call one with no return value expected
myService.serverMethod2();

7. Similarly, the server can invoke the methods in each connected client in a similar manner, as
follows:

Note: The variable name myService happens to match.

//trigger a method in all the connected clients and pass a string
myService.clientMethod1("server is talking");

Method summary for the LCService object

Method Description

LCService.createClient() Used in your application or pod file to create an instance of the
LCService client. This way you can trigger methods in the server and the
server can trigger your methods.

LCService.createServer() Used in your agent file to create an instance of the LCService server.
This way the clients can trigger methods in the agent and the agent can
trigger methods implemented in the clients.
LCService object 297

Property summary for the LCService object

Event handler summary for the LCService object

Interfaces

LCService uses Interface objects to declare which methods are implemented by which side of the
connection. The extra step of defining an interface adds a layer of security; clients only have access
to the Server methods published in the interface, and vice versa.

Interface is an ActionScript object with the following two properties:

It is crucial that the Server and all Clients use equivalent interface objects for LCService to work
correctly. To avoid mismatched Interface object names, place your interfaces in an external
ActionScript file to be included by every SWF file in your application.

Synchronous versus Asynchronous

By default, the LCService object uses normal asynchronous LocalConnection objects. This means
that in order to get a result from your function invocations, you need to define a result handler,
which is called when your request completes. If you’re familiar with traditional LocalConnection
objects, you know that this approach involves more work. If you don’t specify an onResult()
callback, Central looks for a function that matches the pattern funcName_Result.

Because Central always runs locally, you usually specify the sync parameter as true which means
that you want to use the synchronous behavior. (The sync parameter is the last parameter in both
the createClient() and createServer() methods.) However, if the server process you are
calling takes a while to complete (for instance, it is making several web service calls) you might
want an asynchronous connection. That way your application or pod can do other processes
while the server does its work.

Property Description

None.

Event handler Description

None.

Field Description

name String; globally unique string identifier of the Interface. This property is
used by the clients and service to determine to which object they should
be mutually connected.

interfaces Object; contains two properties (Client and Server). These each
contain an array of strings that match the methods that reside in the
client and server elements (application or pod and agent, respectively).
298 Chapter 10: API Reference

Security

The default security behavior inherits from the LocalConnection object’s security: only Clients
and Servers from the same domain can communicate.

By defining an allowDomain() function on your Client and/or Server objects, as the following
example shows, you can allow access from other domains:
gTestService = mx.central.data.LCService.createServer(myInterface, this);
allowDomain=function(domain)
{

if(domain == this.domain() || domain == "frienddomain.com")
{

return true;
} else {

return false;
}

};

LCService.createClient()

Availability

Macromedia Central.

Usage

myService = mx.central.data.LCService.createClient(interfaceObj, id,
callbackObj, bSync);

Parameters

interfaceObj Object; contains details about the LCService name and the list of methods
implemented by both Client and Server. This should contain the same name property in both the
client (here) and the server. For details about the format of an interface object, see “Interfaces”
on page 298.

id String; uniquely identifies this client. Use a combination of the second and third parameters
received in your onActivate() callback.

callbackObj Object; specifies where the methods exposed from this client reside. Simply use
this if you want to define your methods in the root of your application or pod SWF instance.

bSync A Boolean value; indicates whether the remote calls should be performed synchronously.
Setting this to true makes many tasks much easier.

Returns

A reference to the server that your application or pod can use to expose functions and trigger
remote functions.

Description

LCService method; creates a client-side local connection service, so that you can both trigger
remote methods and expose methods in your SWF file for the server to call.

For general information about LCService, see “LCService object” on page 295.
LCService object 299

LCService.createServer()

Availability

Macromedia Central.

Usage

myService = mx.central.data.LCService.createServer(interfaceObj, callbackObj,
bSync);

Parameters

interfaceObj Object; contains details about the LCService name and the list of methods
implemented by both Client and Server. This should contain the same name property in both the
client (here) and the server. For details about the format of an interface object, see “Interfaces”
on page 298.

callbackObj Object; specifies where the methods exposed from this client reside. Simply use
this if you want to define your methods in the root of your application or pod SWF instance.

bSync A Boolean value; indicates whether the remote calls should be performed synchronously.
Setting this to true makes many tasks much easier.

Returns

A reference to the server that your agent can use to expose functions and trigger remote functions.

Description

LCService method; creates a server-side local connection service so that you can both trigger
methods in the clients and expose methods in your SWF file so the clients can call them.

For general information about LCService, see “LCService object” on page 295.

Log object

ActionScript Class Name mx.central.services.Log

The Log object is part of the Central WebService API and is intended to be used with the
WebService object (see “WebService object” on page 384).

You can create a new Log object to record activity related to a WebService object. To execute code
that runs as messages are sent to a Log object, use the onLog() callback function. There is no log
file; the logging mechanism has to be created by you with the code you put inside the onLog()
callback, such as sending the log messages to a trace() command.

The constructor for this object returns a Log object that can then be passed as an optional
argument to the WebService constructor (see “WebService object” on page 384).

Flash MX 2004 ActionScript Class Name mx.central.services.Log

Method summary for the Log object

Method Description

None.
300 Chapter 10: API Reference

Property summary for the Log object

Event handler summary for the Log object

Constructor for the Log object

Availability

Macromedia Central

Usage

myWebSrvcLog = new Log(logLevel [, logName]);

Parameters

logLevel Log level to indicate the types of information you want to pass to the onLog() event.
In the web services code, the log messages are broken down into categories or levels. The
logLevel parameter of the Log object constructor relates to these categories. The following three
logLevels are available:

• Log.BRIEF: The log records primary life-cycle event and error notifications.
• Log.VERBOSE: The log records all life-cycle event and error notifications.
• Log.DEBUG: The log records metrics and fine-grained events and errors.

The default logLevel is log.BRIEF.

logName Optional name that is included with each log message. If you are using multiple log
objects, you can use the logName parameter to determine which log recorded a given message.

Returns

Nothing.

Description

Constructor; creates a Log object. Use this constructor to create a log. After you create the Log
object, you can pass this object to a web service to get messages.

Example

You can call on the new Log constructor, which returns a log object to pass to your web service:
// creates a new log object
myWebSrvcLog = new Log();
myWebSrvcLog.onLog = function(txt)
{

trace(txt)
};

Property Description

None.

Event handler Description

Log.onLog() Sends a log message to a log object.
Log object 301

You then pass this Log object as a parameter to the WebService constructor:
myWebSrvc = new WebService("http://www.mysite.com/info.wsdl", myWebSrvcLog);

As the web services code executes, and messages are sent to the log object, the onLog() function
of your Log object is called. This is the only place to put code that displays the log messages if you
want to see them in real time.

The following are examples of log messages:
7/30 15:22:43 [INFO] SOAP: Decoding PendingCall response
7/30 15:22:43 [DEBUG] SOAP: Decoding SOAP response envelope
7/30 15:22:43 [DEBUG] SOAP: Decoding SOAP response body
7/30 15:22:44 [INFO] SOAP: Decoded SOAP response into result [16 millis]
7/30 15:22:46 [INFO] SOAP: Received SOAP response from network [6469 millis]
7/30 15:22:46 [INFO] SOAP: Parsed SOAP response XML [15 millis]
7/30 15:22:46 [INFO] SOAP: Decoding PendingCall response
7/30 15:22:46 [DEBUG] SOAP: Decoding SOAP response envelope
7/30 15:22:46 [DEBUG] SOAP: Decoding SOAP response body
7/30 15:22:46 [INFO] SOAP: Decoded SOAP response into result [16 millis]

Log.onLog()

Availability

Macromedia Central

Usage

myWebSrvcLog.onLog = function(message)

{

//process the message

};

Parameters

message String; the log message passed to the handler. For more information about log messages,
see “Log object” on page 300.

Returns

Nothing.

Description

Log callback function; Macromedia Flash Player calls this function when log messages are
received. That is, you write this handler so that you can trigger code that processes the messages.
This handler is a good place to put code that records or displays the log messages, such as a
trace() command. The Log construction is described in “Log object” on page 300.

Example

The following example creates a new log object, passes it to a new WebService object and handles
the logging messages:
// create a new log object
myWebSrvcLog = new Log();
302 Chapter 10: API Reference

// pass the log object to the web service
myWebService = new WebService(myWSDLUri, myWebSrvcLog);

// handle incoming log messages
myWebSrvcLog.onLog = function(message)
{

trace("Log Event:\r myWebSrvcLog.message="+message+);

}

MD5 object

ActionScript Class Name mx.central.encryption.MD5

An algorithm for encoding a string in a way that never exposes the content. It’s called a one way
hash because you can only encode. In practice, you encode a string and save the encoded version
(called a digest). Later you can compare the digest to an encoded version of a new string you’re
trying to verify, to see if they match. This way you only save encoded strings that are theoretically
impossible to decode.

Method summary for the MD5 object

Property summary for the MD5 object

Event handler summary for the MD5 object

MD5.encode()

Availability

Macromedia Central.

Usage

myDigest = MD5.encode(messageString);

Example

//this example saves an encoded version of the password locally

//stop the user on first frame for verification
stop();

Method Description

MD5.encode() Returns an MD5 Digest of a given string.

Property Description

None.

Event handler Description

None.
MD5 object 303

onActivate()
{

mySO=SharedObject.getLocal("preferenceFile");

//if they don’t have a password make them create one, otherwise verify
//(naturally, if they just remove the shared object file they bypass this)

if(mySO.data.password==undefined)
{

okay_btn.label = "create password";
okay_btn.onRelease = doNewPassword;
input_txt.text="enter new password here";

}
else
{

okay_btn.label =("verify");
okay_btn.onRelease = doVerify;
input_txt.text="type saved password here";

}
};

doNewPassword=function()
{

//save an encoded version of what they entered in the shared object
mySO.data.password=MD5.encode(input_txt.text);
gotoAndStop("home_frame");

};

doVerify=function()
{

//get the old password (already encoded);
var oldEncodedPassword=mySO.data.password;

//see if old encoded password matches an encoded version of what they type
if(oldEncodedPassword==MD5.encode(input_txt.text))
{

gotoAndStop("home_frame");
}
else
{

input_txt.text="no, try again";
}

};

Parameters

messageString String to encode.

Returns

digest String; the encoded version of the input string.
304 Chapter 10: API Reference

Description

MD5 method; takes a string and returns a 128-bit “fingerprint” or “message digest” version. This
method is useful for message integrity checking. You can use the MD5.encode() method from
anywhere in Central. This is a one-way hash function. There is no way to take an MD5 hash and
decrypt it or determine what string was used to generate it. So, it isn’t a way to store encrypted
data, but rather a way to determine if data has changed.

Although the example shows a way of saving encoded data locally, MD5 is also good for limiting
the chance that users’ sensitive data is compromised while under your control. It’s a way to ensure
that data is never sent to you in a form that can be decoded. For example, you can store encoded
versions of all users’ passwords in your database.

MovieClip object

ActionScript Class Name MovieClip

A special feature was added to Central that can let you identify a string that appears as a true
(operating system level) tooltip when a user’s mouse hovers over a particular movie clip.

Property summary for the MovieClip object

MovieClip.toolTipText

Availability

Macromedia Central.

Usage

myClipInstance.tooltipText = tipString;

Example

print_pb.tooltipText = "Print Records";

Parameters

tipString The string that you want to appear as a tooltip.

Description

MovieClip property; only available in Central. The tip appears when the user holds the mouse
over a movie clip, and goes away when the user clicks or moves the mouse off the movie clip. To
turn off the behavior for a clip that already has a tooltipText property, set the value to an empty
string, as the following code shows:
myClipInstance.tooltipText="";

Property Description

MovieClip.toolTipText String that appears as a tooltip approximately one-half second after the
user places their pointer over this clip.
MovieClip object 305

This straightforward feature has just a few caveats. First, you cannot control exactly when the
tooltip appears. Typically, you can expect a one-half second delay, but this can vary. Also, the
entire bounding area of a clip is used. That is, an irregularly shaped clip will have an active “hit”
area that’s a rectangle matching its maximum width and height (like the box you see when you
select a clip while authoring). Also, even if the movie clip is currently obscured by another visual
element, the tooltip is still active. In such cases, turn off the tooltip by setting it to an empty
string. Finally, the maximum length of the tooltip’s string is based on the user’s operating system.
However, best practices dictate that tooltips are not exceedingly verbose.

PendingCall object

ActionScript Class Name mx.central.services.PendingCall

The PendingCall object is part of the mx.central.services package and is intended to be used with
the WebService object (see “WebService object” on page 384).

When you call a method on a WebService object, the WebService object returns a PendingCall
object. You don’t construct a PendingCall object; rather you just save the instance in a variable.
Then you write onResult and onFault callbacks for that instance to handle the asynchronous
response from the web service method. If the web service method returns a fault, Central calls the
pendingCallInstance.onFault callback and passes a SOAPFault object that represents the
XML SOAP fault returned by the server/web service. If the web service invocation is successful,
Central calls the pendingCallInstance.onResult callback and passes a result object. The result
object that arrives as the parameter for your onResult callback is the XML response from the web
service decoded or deserialized into an ActionScript object. For more information about the
WebService object, see “WebService object” on page 384.

Additionally, the PendingCall object offers you access to output parameters when there are more
than one. Many web services return only a single result, but some web services return more than
one result. The return value referred to in this API is simply the first (or only) result. The
PendingCall.getOuptutXXX functions give you access to all of the results, not just the first.
Although the return value is handed to you as the only argument in the onResult() callback, if
there are other output parameters that you need to access, use getOutputValues() (returns an
Array) and getOutputValue(index) (returns an individual one) to get all the values (decoded
into ActionScript objects).

Finally, you can also access the SOAPParameter object directly. The SOAPParameter object is an
ActionScript object with two properties: value contains the ActionScript value of an output
parameter; element contains the XML value of the output parameter. The following functions
return a SOAPParameter object, or an array of SOAPParameter objects, which contains the value
(param.value) as well as the XML element (param.element): getOutputParameters(),
getOutputParameterByName(theName), and getOutputParameter(theIndex).

Flash MX 2004 ActionScript Class Name mx.central.services.PendingCall
306 Chapter 10: API Reference

Method summary for the PendingCall object

Property summary for the PendingCall object

Event handler summary for the PendingCall object

Constructor for the PendingCall object

Availability

Macromedia Central

Description

The PendingCall object is not constructed by the developer. Instead, when you call a remote
function on a WebService object, the WebService object returns a PendingCall object. That is,
replace PendingCall with the instance name of your PendingCall instance (returned when
constructing a new WebService).

PendingCall.getOutputParameter()

Availability

Macromedia Central

Usage

mySOAPParameterObj=myPendingCall.getOutputParameter(index);

Method Description

PendingCall.getOutputParameter() Gets a SOAPParameter object based on the index you
provide.

PendingCall.getOutputParameterByName() Gets a SOAPParameter object based on the localName
passed in.

PendingCall.getOutputParameters() Gets an array of SOAPParameter objects.

PendingCall.getOutputValue() Gets the output value based on the index passed in.

PendingCall.getOutputValues() Gets an array of all the output values.

Property Description

PendingCall.myCall The SOAPCall operation descriptor for the PendingCall
operation.

PendingCall.request The SOAP request in raw XML format.

PendingCall.response The SOAP response in raw XML format.

Event handler Description

PendingCall.onFault() Called by a web service when the method fails.

PendingCall.onResult() Called when a method has succeeded and returned a
result.
PendingCall object 307

Parameters

index The index of the parameter.

Returns

SOAPParameter object with the following elements:

Description

Function; gets an additional output parameter of the SOAPParameter object, which contains the
value and the XML element. SOAP RPC calls may return multiple output parameters. The first
(or only) return value is always handed to you as the single results argument of the onResult()
callback, but to get access to the others you need to use functions such as this one or
getOutputValue(). The getOutputParameter() function returns the nth output parameter as
a SOAPParameter object.

See also PendingCall.getOutputValue(), PendingCall.getOutputValues(),
PendingCall.getOutputParameterByName(), and PendingCall.getOutputParameters().

Example

Given the following SOAP descriptor file, getOutputParameter(1) would return a
SOAPParameter object with value="Hi there!" and element=the <outParam2> XMLNode:
...
<SOAP:Body>
 <rpcResponse>
 <outParam1 xsi:type="xsd:int">54</outParam1>
 <outParam2 xsi:type="xsd:string">Hi there!</outParam2>
 <outParam3 xsi:type="xsd:boolean">true</outParam3>
 </rpcResponse>
</SOAP:Body>
...

PendingCall.getOutputParameterByName()

Availability

Macromedia Central

Usage

mySOAPParameterObj=myPendingCall.getOutputParameterByName(localName);

Parameters

localName The local name of the parameter. In other words, the name of an XML element,
stripped of any namespace information. For example, the local name of both of the following
elements is bob:

Element Description

value An ActionScript object that contains the value of the parameter.

element The raw XML of the parameter in the SOAP envelope.
308 Chapter 10: API Reference

<bob abc="123">
<xsd:bob def="ghi">

Returns

SOAPParameter object with the following elements:

Description

Function; gets any output parameter as a SOAPParameter object, which contains the value and
the XML element. SOAP RPC calls may return multiple output parameters. The first (or only)
return value is always handed to you in the results argument of the onResult() callback, but to
get access to the others you need to use APIs such as this one. The
getOutputParameterByName() call returns the output parameter with the name localName.

See also PendingCall.getOutputValue(), PendingCall.getOutputValues(),
PendingCall.getOutputParameter(), and PendingCall.getOutputParameters().

Example

Given the following SOAP descriptor file, getOutputParameterByName("outParam2") would
return a SOAPParameter object with a value equal to "Hi there!" and an element in the form
of an XMLNode equal to <outParam2>:
...
<SOAP:Body>
 <rpcResponse>
 <outParam1 xsi:type="xsd:int">54</outParam1>
 <outParam2 xsi:type="xsd:string">Hi there!</outParam2>
 <outParam3 xsi:type="xsd:boolean">true</outParam3>
 </rpcResponse>
</SOAP:Body>
...

PendingCall.getOutputParameters()

Availability

Macromedia Central

Usage

arrayOfSOAPParameterObjects=myPendingCall.getOutputParameters()

Parameters

None.

Element Description

value An ActionScript object that contains the value of the parameter.

element The raw XML of the parameter in the SOAP envelope.
PendingCall object 309

Returns

Array of SOAPParameter objects with the following elements:

Description

Function; gets additional output parameters of the SOAPParameter object, which contains the
values and the XML elements. SOAP RPC calls may return multiple output parameters. The first
(or only) return value always arrives as the single argument for the onResult() callback, but to
get access to the others you need to use APIs such as this one or getOutputValues().

See also PendingCall.getOutputValue(), PendingCall.getOutputValues(),
PendingCall.getOutputParameterByName(), and PendingCall.getOutputParameter().

PendingCall.getOutputValue()

Availability

Macromedia Central

Usage

oneOutputParameter=myPendingCall.getOutputValue(index);

Parameters

index The index of an output parameter. The first parameter is index 0.

Returns

The nth output parameter matching the index that you specify.

Description

Function; gets the decoded ActionScript value of an individual output parameter. SOAP RPC
calls may return multiple output parameters. The first (or only) return value is always handed to
you in the results argument of the onResult() callback, but to get access to the others you need
to use APIs such as this one or getOutputParameter(). The getOutputValue() call returns the
nth output parameter.

See also PendingCall.getOutputParameter(), PendingCall.getOutputValues(),
PendingCall.getOutputParameterByName(), and PendingCall.getOutputParameters().

Example

Given the following SOAP descriptor file, getOutputValue(2) would return true:
...
<SOAP:Body>
 <rpcResponse>
 <outParam1 xsi:type="xsd:int">54</outParam1>
 <outParam2 xsi:type="xsd:string">Hi there!</outParam2>

Element Description

value The value of the parameter in the form of an ActionScript object.

element The raw XML of the parameter in the SOAP envelope.
310 Chapter 10: API Reference

 <outParam3 xsi:type="xsd:boolean">true</outParam3>
 </rpcResponse>
</SOAP:Body>
...

PendingCall.getOutputValues()

Availability

Macromedia Central

Usage

arrayOfOutputParams=myPendingCall.getOutputValues();

Parameters

None.

Returns

Array of all output parameters’ decoded values.

Description

Function; gets the decoded ActionScript value of all output parameters. SOAP RPC calls can
return multiple output parameters. The first (or only) return value is always handed to you in the
results argument of the onResult() callback, but to get access to the others you need to use APIs
such as this one or getOutputParameters().

See also PendingCall.getOutputValue(), PendingCall.getOutputParameter(),
PendingCall.getOutputParameterByName(), and PendingCall.getOutputParameters().

PendingCall.myCall

Availability

Macromedia Central

Usage

myPendingCall.myCall

Description

Property; the SOAPCall object corresponding to the PendingCall object’s operation. The
SOAPCall object contains information about the web service operation, and provides control
over certain behaviors. The myCall property is the literal property name to use, not a holder for
some name you provide. For more information, see “SOAPCall object” on page 381.

Example

The following onResult callback traces the name of the SOAPCall operation:
myCallback.onResult = function(result)
{

// Check my operation name
trace("My operation name is " + this.myCall.name);

};
PendingCall object 311

PendingCall.onFault()

Availability

Macromedia Central

Usage

myPendingCallObj.onFault = function(fault)
{

// handles any faults, for example, by telling the
// user that the server isn’t available or to contact technical
// support

};

Parameters

fault Decoded ActionScript object version of the error containing the properties in the
following list. If the error information came from a server in the form of XML, the SOAPFault
object is the decoded ActionScript version of that XML.

The type of error object returned to PendingCall.onFault() is a SOAPFault object. It is not
constructed by the Central developer, but returned as the result of a failure. This object is an
ActionScript mapping of the SOAP Fault XML type.

Returns

Nothing.

Description

PendingCall object callback function; you provide this handler that Flash Player calls when a web
service method has failed and returned an error. The fault parameter is an ActionScript
SOAPFault object.

Example

The following example handles errors returned from the web service method:
// handles any error returned from the use of a web service method
myPendingCallObj = myWebService.methodName(params)
myPendingCallObj.onFault = function(fault)
{

// catches the SOAP fault
debugOutputField_txt.text = fault.faultstring;
// add code to handle any faults, for example, by telling the

SOAPFault property Description

faultcode String; the short standard string describing the error.

faultstring String; the human-readable description of the error.

detail String; the application-specific information associated with the error, such
as a stack trace or other information returned by the web service engine.

element XML; the XML object representing the XML version of the fault.

faultactor String; the source of the fault (optional if an intermediary is not involved).
312 Chapter 10: API Reference

// user that the server isn’t available or to contact technical
// support

};

PendingCall.onResult()

Availability

Macromedia Central

Usage

myPendingCallObj.onResult = function(result)
{

// catches the result and handles it for this application

}

Parameters

result An ActionScript object version of the XML result returned by a web service method
called with myPendingCallObj = myWebService.methodName(params).

Returns

Nothing.

Description

PendingCall callback function; you provide this handler in order to trap the results returned from
the remote methods you call. The result is a decoded ActionScript object version of the XML
returned by the operation. To get the raw XML returned instead of the decoded result, access the
PendingCall.response property (see “PendingCall.response” on page 314).

Example

The following example handles results returned from the web service method:
// handles results returned from the use of a web service method
myPendingCallObj = myWebService.methodName(params)
myPendingCallObj.onResult = function(result)
{

// catch the result and handle it for this application
ResultOutputField.text = result;

}

PendingCall.request

Availability

Macromedia Central

Usage

rawXML = myPendingCallback.request;
PendingCall object 313

Description

PendingCall property; contains the raw XML form of the current request sent with
myPendingCallback = myWebService.methodName(). Typically, PendingCall.request
provides more information than needed, but you can use it if you are interested in the SOAP that
gets sent over the wire. Use this property to access the raw XML of the request. Use
myPendingCallback.onResult() to get the ActionScript version of the results of the request.

PendingCall.response

Availability

Macromedia Central

Usage

rawXML = myPendingCallback.response;

Description

PendingCall property; contains the raw XML form of the response to the most recent web service
method call sent with myPendingCallback = myWebService.methodName(). Normally, you
would not have any use for PendingCall.response, but you can use it if you are interested in
the SOAP that gets sent over the wire. Because the initial call is asynchronous and it will take
some time, be sure not to attempt to access the response property until the onResult() callback
is triggered. Use myPendingCallback.onResult() to get the corresponding ActionScript version
of the results of the request.

Pod object

ActionScript Class Name mx.central.Pod

The Pod object is equivalent to your pod SWF instance. That is, your pod SWF instance becomes
an instance of the Pod object. The methods listed next give your pod a way to return information
to Central when requested. The event handlers listed give your pod a way to react to global events
triggered by Central. To use any of these, simply replace Pod with this (provided you’re in your
pod SWF instance).

Method summary for the Pod object

Method Description

Pod.getLastTabIndex() Called by the Console to ascertain the highest tab index that your pod is
using (so that other pods know where to start tabbing). This is a function
you write to return information to Central in order to maintain a good user
experience.

Pod.setBaseTabIndex() Called by the Console whenever the baseTabIndex of your pod has
changed so that you can update the tabIndex for controls such as text and
buttons.
314 Chapter 10: API Reference

Property summary for the Pod object

Event handler summary for the Pod object

Pod.getLastTabIndex()

Availability

Macromedia Central.

Usage

getLastTabIndex=function()
{

return gMaxTabIndexUsedByMyPod;
}

Parameters

None.

Returns

An integer representing the last tab index used for this pod.

Property Description

None.

Event handler Description

Pod.onActivate() Called by the Console when your pod has instantiated.

Pod.onDeactivate() Called by the Console when your pod is about to unload.

Pod.onNetworkChange() Called by the Console when the connection status changes.

Pod.onNoticeEvent() Called by the Console when a notice created by your application is
engaged or closed by the user or gets removed programmatically using a
script or a time-out.

Pod.onPositionChange() Called by the Console when the user drags a pod to a new position, when
the user adds a a pod to the Console, or when the user removes another
pod above the current pod.

Pod.onSelectedItem() Called by the Console when your pod receives Blast data. In the case of
pods, data can only be received when the user selects All On Screen from
the Blast pop-up menu. The application sending data always needs to first
make a selection of a data type that matches one listed in your
products.xml file’s supportedTypes tag.
Note: Both applications and pods, or pod classes, need a supportedTypes
tag in order to receive Blast data.
Pod object 315

Description

Pod callback method; called by the Console to determine the highest tab index that your pod is
using. You should write this handler so that your pod can report back to the Console. This way,
other pods can be given the next logical tab index and the user can easily tab through the entire
Central environment. You do this as a courtesy, but it also ensures a good user experience.

Pod.onActivate()

Availability

Macromedia Central.

Usage

onActivate = function(console, podID, viewerID, position, baseTabIndex,
initialData)

{
//set a variable to reference the Console
gConsole = console;

//trigger our own onNetworkChange handler
//using the current connection status
this.onNetworkChange(gConsole.isConnected());

//create a unique name for use with LocalConnection
gUniqueName=podID+"_"+viewerID;

//set the starting tabIndex so our app can be accessible
gBaseTab=baseTabIndex;
username_txt.tabIndex=gBaseTab;
password_txt.tabIndex=gBaseTab+1;
continue_btn.tabIndex=gBaseTab+2;

//display an optional message based on the pod that was created
if(initialData!=undefined)
{

message_txt.text="Thanks for making a "+initialData+" pod";
}

};

Parameters

console Console object; use this to reference any functions in the Central Console API.

podID Number; a unique ID for this particular pod installed with your application. Although
the same pod can appear multiple times, each instance will have the same podID.

viewerID Number; a unique ID for this pod instance. Combined with the podID parameter,
you can create a unique string identifier to use with the LocalConnection object.

position Integer; specifies the ordinal position of the pod (not the pixel location). All pods
have the position 0 when they first appear, because they always show up in the top title
position. However, because onActivate() also triggers when the pod is reopened, position
won’t always be 0.
316 Chapter 10: API Reference

baseTabIndex Number; used for accessibility—your pod should set the tab indexes on controls
such as buttons and text fields starting with this number, so it doesn't interfere with surrounding
Console controls (such as the toolbar).

initialData Any data type; passed to your pod at launch (either in the product.xml file’s
initialData tag or sent as a parameter in the addPod() method).

Returns

Nothing.

Description

Console callback event; called by the Console when a pod is instantiated. When your pod SWF
instance calls Central.initPod(), this method is called when initialization is complete.

You pass initialData by declaring it in your application’s product.xml file using the
initialData tag. Alternatively, an application or other pod can send initialData when it calls
addPod(). This way the data can be dynamic.

A best practice is to keep a reference to the console (gConsole in the following example), so that
you have an object onto which you can attach subsequent calls to the Console API:
gConsole = console;
if(!gConsole.inLocalInternetCache("http://www.mysite.com/my_photo.jpg")){

gConsole.addToLocalInternetCache("http://www.mysite.com/my_photo.jpg");
}

In addition, it’s a good practice to trigger all the handlers that keep your application refreshed,
once in the onActivate() handler. For example:
this.onNetworkChange(gConsole.isConnected());

Note: In order to consolidate the code samples shown for features common to the AgentManager,
Shell, and Console, many examples show just the first parameter (console in this case) being saved in
a variable (shown as gConsole). Although each of these three objects has a slightly different
implementation of onActivate, they all start with a reference to the respective managing object.

Pod.onDeactivate()

Availability

Macromedia Central.

Usage

onDeactivate=function()
{

// perform clean up
clearInterval(gMyInterval);
mySharedObject.data.closingTime=new Date();

};

Parameters

None.
Pod object 317

Returns

Nothing.

Description

Agent, application, or pod event handler; called by the respective shell the instant before an agent,
application, or pod instance is unloaded. Central triggers the onDeactivate() method each time
the user uninstalls or updates an application, or exits Central. The onDeactivate() event should
clean up any global references, including the following:

• Global variables
• Open network connections
• Open Local Connections
• Open LCService and LCDataProvider objects
• Events triggered by setInterval (using clearInterval())

Code you place inside the onDeactivate() method is ensured to run and is also the last code to
execute code before Central shuts down.

Pod.onNetworkChange()

Availability

Macromedia Central.

Usage

onNetworkChange = function (connected)
{

// save connection state in a variable
gOnline = connected;

// display a visual online indicator
onlineGraphic_mc._visible=gOnline;

// if online now, try to connect to web services proxy
if (gOnline==true)
{

myBackgroundTask("start");
}
else
{

myBackgroundTask("stop");
}

};

Parameters

connected Boolean value: true if user is connected; false if offline.

Returns

Nothing.
318 Chapter 10: API Reference

Description

Agent, application, or pod event handler; called by the respective shell when the connection status
(online or offline) changes. The shell does not automatically check for connectivity; it simply
follows the user setting made in the File menu (either work online or work offline) or when the
user selects the network icon (lightning bolt). To determine if the user is online when the
application first loads, use the isConnected() method. You can then manually trigger your own
onNetworkChange() handler so that your contained scripts run. That is, Central only triggers
onNetworkChange() when users manually change their connection status. To check the status
using a script, use the isConnected() method.

Central can’t automatically recognize whether a computer is connected to the Internet; it honors
the user’s setting.

A best practice is to first check the current status (using isConnected()) and save that status in a
variable. Do not attempt online access when the status is false. When onNetworkChange()
reports true (in other words, when going back online), reestablish any background network
access, connecting to data, and updating as needed. For example, call a setInterval function to
periodically call a web service and get up-to-date information. For more information on using the
agent to manage data, see Chapter 2, “Understanding the Macromedia Central Environment,” on
page 19.

Pod.onNoticeEvent()

Availability

Macromedia Central.

Usage

// Handle a change to an existing Notice from this app
onNoticeEvent = function (event, noticeData, initialData)
{

// trace the properties contained in this notice
trace("event.type="+event.type);
trace("optional data from issuing app "+initialData);
for (var i in noticeData){
trace("noticeData."+i+"="+noticeData[i]);
}

// respond according to the event type
switch (event.type){

case "close":
message_txt.text="notice id "+noticeData.id+" was closed";
break;

case "engage":
message_txt.text="you engaged "+noticeData.description;
break;

case "timeout":
Pod object 319

message_txt.text="elapsed time reached "+noticeData.timeout;
break;

case "remove":
message_txt.text="removed the notice named "+noticeData.name;
break;

}
// remove this notice from the list of notices we’re maintaining
if(event.type!="engage"){

myRefeshListofNotices();
}

};

Parameters

event An object containing one string element, type, that provides the reason for the notice’s
dismissal. The type element has one of the following values:

noticeData An object containing several properties with detailed information about the
notice. The following are the available properties:

Value Description

close Closed by the user by selecting the close box in the notice list.

engage Closed by the user by selecting the engage button as in the notice detail.

timeout Dismissed by Central because the notice has timed out.

remove Dismissed by the application through a call to removeNotice().

Property Description

id A number that represents the notice ID. This is the same ID returned
when the notice is first created using addNotice(). That is, you don’t set
this property when you create the notice.

name A string to be displayed in the notice’s title bar. If not specified, the default
value of name is:
application name Notice

description Longer string to be displayed in the notice’s body. The default is an empty
string.

timeout A number that specifies the seconds after which the notice should be
automatically dismissed. Set timeout to 0 to create a notice that never
times out.

alert A Boolean value that indicates whether the notice should be brought to
the user’s attention, rather than recorded in the Console.

engageString A short string; displayed on the engage button. If not specified, no
engage button appears.

navigate A Boolean value that indicates whether the shell should start the
appropriate application when the user selects engage.

unread A Boolean value that indicates whether the notice has been viewed by
the user.
320 Chapter 10: API Reference

initialData Any data type specifying application-specific data passed at the time you call
addNotice().

Returns

Nothing.

Description

Agent, application, or pod event handler; invoked in an agent, application, or pod when a notice
created by your application is dismissed. Any of the following events will trigger
onNoticeEvent(): when the user clicks the close box or clicks the engage text, if the notice times
out, or the notice is removed programmatically through the removeNotice() method.

The specific values contained in the noticeData and initialData come from the initial call to
addNotice(). The onNoticeEvent() is not triggered unless your application first creates a
notice through addNotice(). For an example of how to create a notice and add it, see
AgentManager.addNotice() on page 146.

A common use of this method is to include more detail about a notice in a related window.
Presumably your user wanted the notice. The onNoticeEvent() handler is your opportunity to
give the user further details. By passing application-specific data through initialData, the
application can show the correct item related to a notice (for example, a stock chart view related
to a notice about that stock).

Pod.onPositionChange()

Availability

Macromedia Central.

Usage

onPositionChange = function (newPosition)
{

//save position index value in a variable
gPosition = newPosition;

}

Example

OnPositionChange(newPosition) {
if (newPosition ==0) //we are at the top of the console!!
 atTop = true;

}

Parameters

newPosition Integer; represents the zero-based index of the pod position from the top of the
Console.

Returns

Nothing.
Pod object 321

Description

Called by the Console when the user drags a pod to a new position, when the user adds a pod to
the Console, or when the user removes another pod above the current pod.

Pod.onSelectedItem()

Availability

Macromedia Central.

Usage

onSelectedItem=function(data)
{

//process the data received
};

Example

//RECEIVER APPLICATION:

//place the following in the product.xml’s pod and/or application section
<supportedTypes namespace="http://www.w3.org/2001/XMLSchema">

<type>any</type>
</supportedTypes>

//this method will populate an MListBox component
onSelectedItem=function(data)
{

//prepare a List component to populate
myListComponent.removeAll();

for(var i=0;i<data.length;i++)
{

//make sure we treat the data as a selectedItem (not XML)
var thisItem=data[i].asSelectedItem();
myListComponent.addItem(thisItem.name, thisItem.description);

}
};

//SENDER APPLICATION:

//this part of the code shows how an application can prepare data to send
onActivate=function(shell){

//set a variable to reference the Shell or Console
gShell=shell;

send_btn.onPress=function
{

//prepare the data as an array of two selectedItem items
var dataToSend=new Array();

var item1=new SelectedItem("http://www.mysite.com/ns#", "aType");
item1.name="name one";
item1.description="this is the description for item 1";
322 Chapter 10: API Reference

dataToSend.push(item1);

var item2=new SelectedItem("http://www.mysite.com/ns#", "aType");
item2.name="name two";
item2.description="this is the description for item 2";
dataToSend.push(item2);

//with the items prepared, set the data array and a prompt
gShell.setSelectedItem([item1, item2], "blast two items!");

};
};

Parameters

data An array of instances of the SelectedItem ActionScript structure or an array of XML
objects.

Returns

Nothing.

Description

Application and pod event handler; called by the shell when data is arriving in your application.
For this to happen, another application has to first make a selection of a data type that your
application supports. Then a user can manually select your application from the Blast menu or,
when the Auto Blast option is enabled, it triggers immediately. Although there are several steps
involved in defining the supported data types (in the product.xml file) and preparing a selection
to broadcast (in the sending application), onSelectedItem() is where you define how your
application responds when others send data to it using the Blast feature.

The selection is local to each shell window, so an application in one shell window can set the
selected item without destroying the selected item in another shell window.

Note: All pods that can receive Blast data will receive it when the user selects the Edit > Blast > All On
Screen menu option. Only applications that can receive data show up by name and are listed in the
Edit > Blast menu. However, to receive data, pods must still register types that they support in the
product.xml file.

Your application needs to handle the received data as an array full of ActionScript structures or an
array of XML data. The following two functions are built into Central to make it easy to treat the
received data in the form you prefer. (The application that receives the data may not detect in
which form it was sent.)
asXML(); // returns XML object

asSelectedItem(); // returns SelectedItem object
Pod object 323

Regardless of whether the data contains structures or XML, you can turn it into the form you
want. Macromedia recommends using the ActionScript structure approach for sending and
receiving; this eliminates any extra overhead from converting to or from XML, which is naturally
more verbose and thus less efficient. You can also use the asXML() function to convert data into
its XML form for communicating with external sources, debugging, and so on. Similarly, you can
use the asSelectedItem() function to convert any old XML into SelectedItem object
instances. Remember, though, to convert any old XML into a SelectedItem object properly; the
schemaType field must be set in order to send XML data directly. For more information on the
Blast feature, see Chapter 7, “Using the Blast Feature,” on page 105.

Pod.setBaseTabIndex()

Availability

Macromedia Central.

Usage

setBaseTabIndex=function(newIndex)
{

//set up controls’ tabIndex vales
}

Example

//this example shows a complete strategy to keep tab settings refreshed
onActivate = function(console, podID, viewerID, position, baseTabIndex)
{

//set a variable to reference the shell
gConsole = shell;

//set an array of tab-able controls
gControls=[username_txt, password_txt, continue_btn];

//call our own setBaseTabIndex once initially
this.setBaseTabIndex(baseTabIndex);

};

//refresh the controls in the pod
setBaseTabIndex=function(newIndex)
{

for(var i=0;i<gControls.length;i++)
{

gControls[i].tabIndex=newIndex+i;
}
gMaxTabUsed=newIndex+i;

};

//set up handler to report back to the Console
getLastTabIndex=function()
{

return gMaxTabUsed;
};
324 Chapter 10: API Reference

Parameters

newIndex Integer; represents the Central next available tab index. Use this index as your base
tab index.

Returns

Nothing.

Description

Pod method; called by the Console to notify your pod that its baseTabIndex has changed and
therefore you need to reset the tabIndex values for controls such as text and buttons. Setting
tabIndex values using the baseTabIndex received in your onActivate() code until pods are
added or otherwise rearranged (say, by the user repositioning them) is important, because the
console calls setBaseTabIndex() as a way of saying that it’s time to update your tab indexes.

The example code shows a complete and fairly workable strategy. It may seem like a lot of work,
but remember, your pod was loaded into a single SWF file (the Console window) along with
other pods and notices.

RegExp object

ActionScript Class Name mx.central.RegExp

The RegExp object provides support for regular expression evaluation from ActionScript. You can
use the RegExp object whenever you need to match ActionScript strings. For example, the
expression "hunt?" can be used to find all instances of "hunt", "hunted", "hunting", and
"hunter". The expression "cp *.xml ../" can be used to find all files that have filenames
ending in ".xml".

Regular expressions constitute a large area of functionality that is documented at length in many
locations on the Internet. The implementation of regular expressions in Central is nearly identical
to the ECMA-262 Edition 4 specification (see www.mozilla.org/js/language/es4/index.html),
with the exception that the Central implementation does not support literals. For more
information about using regular expressions in Central, Macromedia has an online article at
www.macromedia.com/devnet/central/articles/regex_04.html.

Method summary for the RegExp object

Method Description

RegExp.exec() Perform search (ECMAscript name).

RegExp.match() Same as exec (name used by JavaScript).

RegExp.test() Equivalent to exec(string) != null.

RegExp.replace() For every instance where the RegExp object matches in string, replace
with repl.
RegExp object 325

http://www.macromedia.com/devnet/central/articles/regex_04.html
http://www.macromedia.com/devnet/central/articles/regex_04.html
http://www.mozilla.org/js/language/es4/index.html

Property summary for the RegExp object

Regular Expression Syntax

The following tables list the special character types supported in this RegExp API.

Basic Support

Extensions

Property Description

RegExp.dotall Whether dot (.) matches new lines.

RegExp.extended Whether in extended mode.

RegExp.global Whether global search is on.

RegExp.ignoreCase Whether case is being ignored.

RegExp.lastIndex The index of the last match.

RegExp.multiline Whether multiline is on.

RegExp.source The source string of the last match.

Token Description

^ Beginning of line/string (see multiline property)

$ End of line/string (see multiline property)

. Match any character

[Range of characters

re|re Choice

re* Zero or more

re+ One or more

re? Zero or one

\ Escape character

[] Range specifier (start-end) and/or group of characters

Token Description

re*? Zero or more nongreedy

re+? One or more nongreedy

re?? Zero or one nongreedy

re{} A numbered or ranged multiplier

re{}? (Nongreedy)

\b Either end of word

\B Not either end of word
326 Chapter 10: API Reference

Constructor for the RegExp object

When creating a new RegExp object, you pass in a string and any flags, as follows:
re = new RegExp("My String", myFlag);

For example, to search for an HTML string, you define the string and create a new RegExp
object. The result variable then contains the match, as the following example shows:
str = "This is an HTML string";
re = new RegExp("(.*?)");
result = re.match(str); // result[0] == "string"

Possible flags are:

• i - ignoreCase
• s - dotall
• m - multiline
• x - extended
• g - global

RegExp.dotall

Availability

Macromedia Central.

Usage

RegExp.dotall

Description

RegExp property; specifies whether dot (.) matches new lines. Use the s flag when constructing
this RegExp object to set dotall = true.

\d [0-9]

\D [^0-9]

\s Whitespace

\S Not whitespace

\w Alphanumeric and _

\W Not alphanumeric or _

(re) Group

(?= re) Look ahead

(?! re) Negative look ahead

(?: re) Noncapturing group (for overriding precedence rules)

(?P<name>re) Named group (from Python)

Token Description
RegExp object 327

RegExp.exec()

Availability

Macromedia Central.

Usage

RegExp.exec(string)

Parameters

string String to search.

Returns

Return an object with the following properties:

Description

RegExp method; performs search (ECMAscript name).

RegExp.extended

Availability

Macromedia Central.

Usage

RegExp.extended

Description

RegExp property; specifies whether in extended mode. Use the x flag when constructing this
RegExp object to set extended = true. Read-only property.

When a RegExp object is in extended mode, whitespace characters in the constructor string are
ignored. This is done to allow more readable constructors.

Example

The following example illustrates the different ways to construct a RegExp object. The second
constructor uses the x flag, causing the whitespaces in the string to be ignored.
// matches either xxx-xxx-xxxx or (xxx)xxx-xxxx
var rePhonePattern = new RegExp("^(?:\\d{3}-\\d{3}-

\\d{4}|\\(\\d{3}\\)\\s?\\d{3}-\\d{4})$");

Property Description

index Index into string of match

input Original string

[0] Matched string

[1],[n] Parenthesized groups

<name>... Named groups (see “Regular Expression Syntax” on page 326)
328 Chapter 10: API Reference

// more readable as:
var rePhonePattern2= new RegExp("^(?:\\d{3}-\\d{3}-\\d{4} |

\\(\\d{3}\\)\\s?\\d{3}-\\d{4})$","x");

RegExp.global

Availability

Macromedia Central.

Usage

RegExp.global

Description

RegExp property; specifies whether global search is on. Read-only property. Use the g flag when
constructing this RegExp object to set global=true. When global=true, the lastIndex
property is set after a match is found. The next time a match is requested the regular expression
engine starts from the lastIndex position in the string.

RegExp.ignoreCase

Availability

Macromedia Central.

Usage

RegExp.ignoreCase

Description

RegExp property; specifies whether case is being ignored. Read-only property. Use the i flag when
constructing this RegExp object to set ignoreCase = true.

RegExp.lastIndex

Availability

Macromedia Central.

Usage

RegExp.lastIndex

Description

RegExp property; the index of the last match. Read-only property. Will always be 0 unless
global=true for this RegExp object.

RegExp.match()

Availability

Macromedia Central.

Usage

RegExp.match(string)
RegExp object 329

Parameters

string String to match.

Returns

Returns an object with the following properties:

Description

RegExp method; same as the exec method (name used by JavaScript).

RegExp.multiline

Availability

Macromedia Central.

Usage

RegExp.multiline

Description

RegExp property; specifies whether multiline is on, allowing a value to be more than one line.
Read-only property. Use the m flag when constructing this RegExp object to set multiline =
true.

RegExp.replace()

Availability

Macromedia Central.

Usage

RegExp.replace(string, repl)

Parameters

string String to match.

repl String with which to replace the matched string.

Returns

Nothing.

Property Description

index Index into string of match

input Original string

[0] Matched string

[1],[n] Parenthesized groups

<name>... Named groups (see “Regular Expression Syntax” on page 326)
330 Chapter 10: API Reference

Description

RegExp method; for every instance where the RegExp matches in string, replace with repl.

RegExp.source

Availability

Macromedia Central.

Usage

RegExp.source

Description

RegExp property; source string of the last match.

RegExp.test()

Availability

Macromedia Central.

Usage

RegExp.test(string)

Parameters

string String to test for.

Returns

Boolean value: true if the string is matched; otherwise, false.

Description

RegExp method; equivalent to exec(string) != null.

RPC object

ActionScript Class Name mx.central.services.RPC

RPC callback object; this is the object type returned each time the createCall() method is
called on an RPCFactory object. The RPC callback object receives events when results or faults
are returned from the RPC method called with createCall(). That is, not only does
createCall() return an instance of the RPC object, but it also invokes the remote method.
Callbacks defined for the RPC object instance are how you handle the results.
myRPCobj = myRPCFactoryObject.createCall(myMethod [, argument1, …argument2]);

For more information, see “RPCFactory object” on page 334.

Method summary for the RPC object

Method Description

None.
RPC object 331

Property summary for the RPC object

Event handler summary for the RPC object

RPC.onFault()

Availability

Macromedia Central.

Usage

// create an RPCFactory object
myRPCFactory = new RPCFactory(RPCUrl);

// create an RPC object and trigger the remote call
myRPCObject = myRPCFactory.createCall(myMethod, argument1);

// handles any errors returned
myRPCObject.onFault = function(fault)
{

// save the fault in the gSavedFaultStructure homemade variable
gSavedFaultStructure = fault;

};

Parameters

fault An ActionScript object with properties that map to the XML-RPC structure type of the
fault.

Returns

Nothing.

Description

RPC callback object event handler; Central calls this method when the createCall() method
has failed and returns an error. You need to write this handler for the RPC instance returned when
you invoke createCall() on the RPCFactory instance. The fault parameter is the ActionScript
object version of an XML fault structure.

Property Description

RPC.response The raw XML version of the results returned from createCall().

Event handler Description

RPC.onFault() Called by Central when the method called with createCall() generates an error.

RPC.onResult() Called by Central when the method called with createCall() returns a result.
332 Chapter 10: API Reference

RPC.onResult()

Availability

Macromedia Central.

Usage

// create an RPCFactory object
myRPCFactory = new RPCFactory(RPCUrl);

// create an RPC object and trigger the remote call
myRPCObject = myRPCFactory.createCall(myMethod, argument1);

// handle the results
myRPCObject.onResult = function(result)
{

// display the result in an onscreen text field
myResults_txt.text = result;

};

Parameters

result A decoded ActionScript object version of the XML result returned by an RPC web
service method called with createCall().

Returns

Nothing.

Description

RPC callback object event handler; Central calls this method when the createCall() method
successfully returns a result. You need to write this handler for the RPC instance returned when
you invoke createCall() on the RPCFactory instance. The result parameter is the
ActionScript object version of an XML fault structure. See “RPC.response” on page 333.

RPC.response

Availability

Macromedia Central.

Usage

// create an RPCFactory object
myRPCFactory = new RPCFactory(RPCUrl);

// create an RPC object and trigger the remote call
myRPCObject = myRPCFactory.createCall(myMethod, argument1);

myRPCObject.onResult = function(result)
{

theRawXML = myRPCObject.response;
};
RPC object 333

Description

RPC callback object property; contains the raw XML form of the response to the most recent web
service method call made using createcall(). Use myRPCCallbackObj.onResult() to get the
corresponding ActionScript version of the results of the request. As the example shows, you
should wait until the onResult() callback is triggered before attempting to access the response
property.

RPCFactory object

ActionScript Class Name mx.central.services.RPCFactory

This object contains a parsed version of the entire XML-RPC file you specify in the RPCUrl
parameter. You can then use this RPCFactory instance to create calls (based on methods defined
in the XML-RPC file). That is, with an instance of the RPCFactory object, you can invoke a
single method, createCall(), that both triggers a remote method and returns an instance of the
RPC object. You then define methods on the RPC object to handle results and errors. For more
information, see “RPC object” on page 331.

Method summary for the RPCFactory object

Property summary for the RPCFactory object

Event handler summary for the RPCFactory object

Constructor for the RPCFactory object

Availability

Macromedia Central.

Usage

myRPCFactoryInstance = new RPCFactory(RPCUrl);

Parameters

RPCUrl The location where your RPC-XML file resides. This file contains the remote method
declarations that Central then parses.

Method Description

RPCFactory.createCall() Invokes a remote method (in your RPCFactory instance’s XML-RPC
file) and returns an RPC object for which you can define callbacks that
handle the results and faults.

Property Description

None.

Method Description

None.
334 Chapter 10: API Reference

Returns

Nothing.

Description

Constructor; creates an RPCFactory object. Creates an instance of the RPCFactory object (XML-
RPC). This object contains a parsed version of the entire XML-RPC file you specify in the
RPCUrl parameter. You can then use this RPCFactory instance to create calls (based on methods
defined in the XML-RPC file). That is, with an instance of the RPCFactory object, you can
invoke a single method, createCall(), that both triggers a remote method and returns an
instance of the RPC object. You then define methods on the RPC object to handle results and
errors. For more information, see “RPC object” on page 331.

RPCFactory.createCall()

Availability

Macromedia Central.

Usage

myRPCObj = myRPCFactoryObject.createCall(myMethod [, argument1, …argument2])

Parameters

The parameters that are required depend on the RPC method being called. Typically, the first
parameter is the method name, which is followed by any arguments that the method requires.

Returns

An RPC callback object. This object can receive the results of the RPC method or any faults that
the method generates. To receive these events, implement the RPC.onResult() and
RPC.onFault() handlers. See “RPC.onResult()” on page 333 and “RPC.onFault()” on page 332.

Description

RPCFactory object method; invokes a remote RPC method defined in the XML-RPC file
supplied when the RPCFactory object is created (new RPCFactory(RPCUrl)). Because the call is
asynchronous, createCall() returns an object for which you need to define an onResult()
callback to handle results and an onFault() callback to handle errors.

SelectedItem object

ActionScript Class Name mx.central.data.SelectedItem

Creating a SelectedItem instance using new SelectedItem() is the first step for sending Blast
data. As the example shows, you need to populate the properties within your instance with values.
Finally, when you’re ready to make that data available to the Blast menu, use the
setSelectedItem() method. Populating this object is only the end of the “sending” side of the
Blast feature. When the user chooses to send data using the Blast feature, the application on the
“receiving” side needs an onSelectedItem() callback defined that handles the data received. For
more about setting the selection or about receiving the Blast data, see “Using XML objects to send
data” on page 112.
SelectedItem object 335

When you decide to make data available through the Blast feature to other applications, you need
to also decide which data type (within a particular namespace) to make available. The developer
of the application intending to receive your data must specify the same data type in their
supportedTypes tag (in the product.xml file). Although an application can say it supports any
data type after that data is received, the data will need to be parsed. Since it is practically
impossible to write a parsing script that can intelligently make sense of any data type, you should
either select and use a common data type (such as one listed in the CentralData.xsd file) or
publish a schema for the data types you’re going to send using the Blast feature. Not only does a
custom data type require additional design time on your part (you may be “reinventing the
wheel”), but the other developers will need to know about your schema ahead of time. If you
intend to only support sending data to and from your own products using the Blast feature, this is
not an issue. However, the Blast feature becomes more powerful when disparate applications can
cooperate with each other.

For more about the supportedTypes tag, see “Registering supported data types in the
product.xml file” on page 109.

For more information about the Blast feature, see Chapter 7, “Using the Blast Feature,” on
page 105.

Constructor for the SelectedItem object

Availability

Macromedia Central.

Usage

mySelectedItemInstance = new SelectedItem(nameSpace, dataType)

Example

// RECEIVER APPLICATION:

// place the following in the product.xml file’s pod and/or application section
<supportedTypes namespace="http://www.w3.org/2001/XMLSchema">

<type>any</type>
</supportedTypes>

// this method will populate an MListBox component
onSelectedItem=function(data)
{

// prepare a List component to populate
myListComponent.removeAll();

for(var i=0;i<data.length;i++)
{

// make sure we treat the data as a selectedItem (not XML)
var thisItem=data[i].asSelectedItem();
myListComponent.addItem(thisItem.name, thisItem.description);

}
};
336 Chapter 10: API Reference

// SENDER APPLICATION:

// this part of the code shows how an application can prepare data to send
onActivate=function(shell){

// set a variable to reference the Shell or Console
gShell=shell;

send_btn.onPress=function()
{

// prepare the data as an array of two selectedItem items
var dataToSend=new Array();

var item1=new SelectedItem("http://www.mysite.com/ns#", "aType");
item1.name="name one";
item1.description="this is the description for item 1";
dataToSend.push(item1);

var item2=new SelectedItem("http://www.mysite.com/ns#", "aType");
item2.name="name two";
item2.description="this is the description for item 2";
dataToSend.push(item2);

// with the items prepared, set the data array and a prompt
gShell.setSelectedItem([item1, item2], "blast two items!");

};
};

Parameters

nameSpace A string that uniquely identifies all the data types you are using. Traditionally, this is
a URL (containing an XSD schema) that declares how the data type is structured.

dataType A string that identifies what data type you want to cast. This string determines how
you can populate the data, as well as what other applications can receive it when transmitted
through the Blast feature. (Only applications that support this data type can receive the Blast
data.)

Returns

SelectedItem object; an instance returned that you can use to populate with values and then make
available for sending with the Blast feature by using the setSelectedItem() method.

Description

Constructor function; used to create an instance in the form of a SelectedItem object. You need to
specify a unique nameSpace in addition to the dataType in case another developer designs a data
type with the same name as yours. Including a namespace means that two developers could both
have a different implementation of the same named data type with no conflict. For instance,
“developer 1 thing” and “developer 2 thing” are both “things,” but they’re different. Macromedia
has defined some basic data types to get you started; these are defined in the first version of the
CentralData.xsd schema.
SelectedItem object 337

Also, the following two functions are built into Central to make it easy to treat the received data
in the form you prefer. (The application that receives the data may not know in which form it was
sent.)
asXML(); // returns XML object

asSelectedItem(); // returns SelectedItem object

Regardless of whether the data contains structures or XML, you can turn it into the form you
want. Macromedia recommends using the ActionScript structure approach for sending and
receiving; this eliminates any extra overhead from converting to or from XML, which is naturally
more verbose and thus less efficient. The asXML() function could also be used to convert data
into its XML form for communicating with external sources, debugging, and so on. Similarly, the
asSelectedItem() function could be used to convert any old XML into SelectedItem object
instances. Remember, to convert any old XML into a SelectedItem object properly, the
schemaType field has to be set in order to send XML data directly.

Shell object

ActionScript Class Name mx.central.Shell

Applications communicate with the Central environment through the Shell object. The shell is to
your application what the Console is to your Pods and what the AgentManager is to your Agent.
That is, you can think of the shell as the window that holds your application. Your application
receives a reference to the shell as the first parameter in the onActivate() method. That
reference is used whenever you want to access any methods in the Shell object. If you want your
application to communicate directly with your pods or agent, you should use your own
implementation of the LocalConnection object or the Central LCService class developed
specifically for this purpose.

The following methods are implemented by the shell, and are called by your application by using
a reference to the shell. (That is, you always replace Shell with a variable that contains the
reference to the shell received in your onActivate() handler.)

Method summary for the Shell object

Method Description

Shell.addNotice() Called by your application to create a new notice.

Shell.addPod() Called by your application to make a pod available in the
Console. (The pod doesn’t become visible until the user
opens it or you call viewPod().)

Shell.addToLocalInternetCache() Called by your application to add a URL to the local
Internet cache.

Shell.editLocationDialog() Called by your application to open the Edit Location
dialog box in the same way as if the user manually selects
Edit Locations from the Location pop-up menu in the
Identity & Location section of the general preferences.
This gives the user the opportunity to make changes to
their location settings.
338 Chapter 10: API Reference

Shell.getAgent() Called by your application to access various properties of
the agent, such as whether it’s currently running.

Shell.getBounds() Called by your application to ascertain the current
window size of your application. (An ActionScript object
with height and width is returned.)

Shell.getNotices()Shell.getNotices() Returns an array of ActionScript objects, each containing
details about the notices created by your application that
are still present.

Shell.getPods() Returns an array of ActionScript objects, one for each
pod available to your application (as listed in the
product.xml file or created using addPod()) and each
containing details about that pod.

Shell.getPreferences() Gets the user preferences that have been exposed to
your application.

Shell.getSelectedItem() Returns the most recent SelectedItem that you created
using setSelectedItem(). Populating a SelectedItem with
data is the first step in making that data available to other
applications through the Blast feature.

Shell.getViewedApplications() Returns an array of ActionScript objects, each containing
details about each Shell instance (that is, separate
window) currently running your application.

Shell.getViewedPods() Returns an array of ActionScript objects, each containing
details about the pod instances currently arranged in the
Console.

Shell.inLocalInternetCache() Called by your application when it wants to check
whether a URL is in the local Internet cache. (Returns
true if it is, false otherwise.)

Shell.isConnected() Called by your application to determine current network
status.

Shell.isConsoleOpen() Called by your application to determine if the console is
currently open.

Shell.isPurchased() Reserved. Attribute currently unavailable.

Shell.newLocationDialog() Called by your application to open the New Location
dialog box in the same way as if the user manually selects
New Locations from the Location pop-up menu in the
Identity & Location section of the general preferences.
After the user names the new location, the standard
preference dialog box appears. You also have the option
to tag specific fields as required, although the user can
always cancel the operation.

Shell.removeFromLocalInternetCache() Called by your application to remove a specific URL
(such as an image file) from the local Internet cache.

Method Description
Shell object 339

Property summary for the Shell object

Event handler summary for the Shell object

Shell.removeNotice() Called by your application when you want to remove a
notice using the notice ID returned at the time that the
notice was added.

Shell.removePod() Called by your application when you want to remove a
pod using the pod ID returned when the pod was added.
(Unlike when a user closes a pod, this makes the pod no
longer accessible.)

Shell.requestPayment() Reserved. Attribute currently unavailable.

Shell.requestSizeChange() Called by your application to request a change to the size
of the application window (height and width). Sometimes
the user’s screen size prevents you from resizing.

Shell.setProgress() Called by your application to change the Central built-in
progress bar at the bottom of the shell. This method lets
you do one of three things: you can display a specific
percentage, display the indeterminate indicator (a
continuous barber pole animation), or remove the
progress bar from view.

Shell.setSelectedItem() Called by your application to notify the shell that you have
prepared new data (by way of the user making a
selection, for example) that you want to make available to
other applications through the Blast feature.

Shell.setStatus() Called by your application to set a current message in the
status area at the bottom of the shell.

Shell.startAgent() Called by your application to start the agent associated
with this application (in the product.xml file).

Shell.stopAgent() Called by a pod to stop the agent associated with this
application (in the product.xml file).

Shell.validateActivationKey() Reserved. Interface currently unavailable.

Shell.viewPod() Calling this function makes the specified pod viewable in
the top viewer (that is, the uppermost tile) of the Console.
(This method requires that the specified pod is first
identified in your product.xml file or created using
addPod().)

Property Description

None.

Event handler Description

None.

Method Description
340 Chapter 10: API Reference

Shell.addNotice()

Availability

Macromedia Central.

Usage

noticeID=shellReference.addNotice(noticeData [,initialData])

Example

// This example function adds a notice based on parameters received
// You could use it as follows:
// var thisID=postStockNotice("MACR", 20, "a description", true);
// myListOfNotices.push(thisID);

postStockNotice=function(ticker, price, ruleDescription, alert)
{

// Creates a new notice object
var noticeData = new Object();
noticeData.name = ticker + " " + price;
noticeData.description = ruleDescription;
noticeData.alert = alert;
noticeData.engageString = "show";
// add noticeData using a reference to gShell (received in onActivate)
var noticeID = gShell.addNotice(noticeData, {ticker: ticker});

// return the ID of this notice for future reference
return noticeID;

}

Parameters

noticeData An object containing several properties with detailed information about the
notice. The following are the available properties:

Property Description

id A number that represents the notice ID. This is the same ID returned
when the notice is first created using addNotice(). That is, you don’t set
this property when you create the notice.

name A string to be displayed in the notice’s title bar. If not specified, the default
value of name is:
application name Notice

description Longer string to be displayed in the notice’s body. The default is an empty
string.

timeout A number that specifies the seconds after which the notice should be
automatically dismissed. Set timeout to 0 to create a notice that never
times out.

alert A Boolean value that indicates whether the notice should be brought to
the user’s attention, rather than recorded in the Console.

engageString A short string; displayed on the engage button. If not specified, no
engage button appears.
Shell object 341

initialData Arbitrary application-specific data of any type. This data is received as the third
parameter in an onNoticeEvent callback.

Returns

NoticeID used to refer to this notice in later calls.

Description

AgentManager, Console, or Shell method; triggered by an agent, pod, or application, respectively,
to create a new notice. You need a reference to the appropriate shell (returned as the first
parameter in the onActivate event) to which you trigger this method. The examples use gShell
with the assumption that that variable was set by onActivate. For more information on getting a
reference to the shell, see Agent.onActivate, Application.onActivate, or Pod.onActivate.

It’s good practice to store some identifying information in the optional initialData parameter
when adding a notice. When the user engages the notice, the identifying information is received
in the onNoticeEvent event.

Also, it’s often better to update a notice instead of adding a new one. You update a notice deleting
the old one and replacing it with a new one. This requires you to keep track of the notices as you
create them.

Shell.addPod()

Availability

Macromedia Central.

Usage

podID=shellReference.addPod(podData)

Example

// Create a pod when your application loads
onActivate = function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
var gShell = shell;

// trigger a homemade function that creates a named pod
var days=["sun","mon","tue","wed","thu","fri","sat"];
var dayName=days[new Date().getDay()];
createPod(dayName+"_pod");

navigate A Boolean value that indicates whether the shell should start the
appropriate application when the user selects engage.

unread A Boolean value that indicates whether the notice has been viewed by
the user.

Property Description
342 Chapter 10: API Reference

}

// creates and opens a uniquely named pod based on a specific class
createPod = function (theName)
{

// Create a new pod and populate it
var podData = new Object();

// Set the name that displays on the pod itself
podData.name = theName;

// This value must be the same as the <podClass name="name"> tag
podData.className = "calendarClass";

// Set an initial value to keep with the pod
podData.initialData = new Date();

// Add the pod and save a reference to it
var thisPodID = gShell.addPod(podData);

// Use the agentManager reference to view this pod in the console
gShell.viewPod(thisPodID);

};

Parameters

podData Pod data object containing several properties. This is the single parameter used any
time you create, destroy, or simply reference a pod. A podData object includes the following
properties:

Property Description

id A numeric unique ID returned when you call addPod(), so that you can
later reference the pod. Do not set this property when adding the pod.

name A string that specifies the name displayed on the pod itself. The name in
the pop-up menu at the top of the Console always matches your
application name. One application can have multiple pods, each with its
own name.
Shell object 343

Returns

podID; Number set by Central and representing the unique identifier of the pod instance.

Description

AgentManager, Shell, or Console method; called by an agent, application, or pod, respectively, to
add a pod to the Console. The addPod() method only makes a new pod instance available, and
viewPod() actually makes the pod appear (as though the user physically selected it from the
Console’s pod pop-up menu). You need to use the podID returned from the addPod() method to
trigger the viewPod() method.

className A string that specifies the name of the class, as defined in the product.xml
file, that refers to a particular implementation of the pod. If your
application uses only one pod, you won’t need a pod className.
However, if you plan to have multiple pod instances based on the same
template, you should define both a podClass and your pod. You need to
define the podClass element separately. For example, suppose that you
describe the podClass tag as follows:
<podClass name="className" src="pod.swf"/>
You can then create instances of this podClass in one of two ways. First,
using the product.xml file, you can add the following pod tag:
<pod name="display name" className="className"/>

The second way to create an instance of this podClass is when creating a
new pod using addPod, as follows:
podData.name="display name";
podData.className="className";

Note: When using ActionScript 2.0, avoid .class; it is a reserved word.
Use className.

height An optional numeric parameter that you may declare to set the height, in
pixels, of the pod instance. The default height is 100. Pod widths are fixed
at 170 pixels.

src A string that specifies the source SWF file. The value is either absolute or
relative. (You can only set this value in the product.xml file’s pod tag or
podClass tag.)

enabled A Boolean value that specifies whether the pod has been added and is
available to the user. This value is only returned when calling getPods();
don’t set it in the object you pass to addPod().

appid A number set by Central to associate a pod with your application.

supportedTypes An array containing strings that identify the data types that this pod can
exchange through the Blast feature. (You can only set these types in the
product.xml file’s supportedTypes tag within the pod or podClass tags.)

initialData An optional property of any data type that you set at the time you trigger
addPod(). You can determine this value later when you reference a pod.

Property Description
344 Chapter 10: API Reference

The hierarchy of application, pod, and podClass is important. As long as your application has at
least one pod defined in the product.xml file, the user can instantiate multiple pods in the
Console. While the Console only lists applications with pods available, it won’t list your
application more than once. This is true even if you include multiple pod tags (in the product.xml
file) or if you create multiple instances of a pod (either with addPod() or through the
product.xml file). If an application has more than one pod available, the user will see that choice
in a secondary pop-up menu inside the pod itself (next to where the pod’s name appears).

Generally speaking, the user has the ultimate control over how pods are presented. However,
through addPod(), your application can make more pods available, and through viewPod()
added pods can be displayed. There are also methods to determine which pods are available and
which are currently being viewed (getPods() and getViewedPods() respectively). In addition,
with a podID you can use the removePod() method to eliminate a particular pod. However, this
is not the same as a user closing a pod—removePod() makes the pod unavailable. There are lots
of options available, but keep in mind that the goal is to provide the user with intuitive tools that
provide flexibility during development.

Shell.addToLocalInternetCache()

Availability

Macromedia Central.

Usage

shellReference.addToLocalInternetCache(url [, bOverwrite, expiration])

Example

// this example adds a JPG to the cache, loads it, then checks if successful
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

var theFile="http://www.mysite.com/images/photo.jpg"
// add it to the cache
gShell.addToLocalInternetCache(theFile);
someClipInstance.loadMovie(theFile);

// check that the disk quota wasn’t exceeded
if(gShell.inLocalInternetCache(theFile)==true)
{

// trigger homemade function to explain the image wasn’t downloaded
myAlertFunction("The photo won’t be available when offline");

}

};

Parameters

url String; a fully qualified URL where the file to be cached resides.
Shell object 345

bOverwrite Optional parameter; a Boolean value that indicates whether to overwrite
preexisting files of the same name. If the value of bOverwrite is true and the file indicated as the
url value is already in the cache, Central overwrites the file. The default value for bOverwrite is
false.

expiration Optional parameter; either a Date object or a number. This value indicates when
the locally cached file will be considered out of date. If you provide a Date object for this value,
Central considers the file current until the date indicated. If you do not include an expiration
date, the default expiration for any cached file is three days. If you provide a number for this
value, Central considers the file current for that number of days.

Returns

None.

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application, respectively, to
add a URL to the local Internet cache. Subsequent requests for that URL by any application in
Central will retrieve that data from the cache rather than from the web, enabling products to use
data even when the user is offline. To ensure your application loads the URL from the Internet,
first call addToLocalInternetCache() with the bOverwrite parameter set to true.

Note: Central considers file types of Portable Executable formats (DLL, EXE, OCX, and so on)
unsafe and will not add them to the local Internet cache.

Usually, you’ll call the addtoInternetCache() method before loading an image or data file.
Regardless of how long the download takes, you can immediately call a command such as
loadMovie() to load the same file. Adding to the cache simply means that file is saved on the
user’s hard disk. Although the addtoIntenetCache() method does download the file, it
primarily adds URLs to a list from which Central always checks before attempting to download
from the Internet.

Files do not expire when a user is offline. Similarly, once a file is expired it isn’t automatically
removed from the cache. Rather, subsequent attempts to load that URL attempt to access the
Internet unless the user is offline. If the user is online and the inLocalInternetCache() method
is called, the file in question will be removed from the cache if it’s expired. If the user is online and
the addToInternetCache() method is called, the file in question will be overwritten if it’s
expired.

If the value of the bOverwrite parameter is true and that URL is already in the cache, the file
will be overwritten.

The user sets the cache size limit in the Central user preferences. The default size for space shared
by all applications running in Central is 20 MB. All applications share this limited space. When
the cache contents exceeds 20 MB, the user is asked for more space for local Internet files. If
refused, the file is not cached. You can check for success by calling inLocalInternetCache().

When caching files, the files are identified by their URL. However, Central does not distinguish
between separate hosts within the same domain. For example, Central considers the following
two URLs as the same:
346 Chapter 10: API Reference

http://www.mydomain.com/pub/myFile.swf
http://applications.mydomain.com/pub/myFile.swf

You can cache files from multiple hosts within a domain as long as the paths to the files are
unique across these hosts.

Note: The size limitation for a URL to add to cache is 129 characters (URLs with more than 129
characters will not be added to cache).

Shell.editLocationDialog()

Availability

Macromedia Central.

Usage

shellReference.editLocationDialog()

Example

// this example gives the user a button they can use to launch the edit dialog
onActivate=function(shell)
{

// set a variable to reference the Shell or Console
gShell=shell;

// set up the button
edit_btn.onPress=function()
{

gShell.editLocationDialog();
}

}

Parameters

None.

Returns

Nothing.

Description

Shell or Console method; called by your application or pod to open the Edit Location dialog box
from the user’s preferences, so that they may edit their current list of locations. This action is the
same as if the user selects Edit Locations from the Location pop-up menu in the Identity &
Location section of the general preferences. The only difference here is that the user never sees the
rest of their preferences if they cancel the operation. Using the editLocationDialog() method
is simply a way to help access this setting by way of your application.
Shell object 347

Shell.getAgent()

Availability

Macromedia Central.

Usage

agentData=shellReference.getAgent()

Example

// this example lets the user start an agent if it’s not already started
onActivate=function(shell)
{

// set a variable to reference the Shell or Console
gShell=shell;

// set up a button to start agent
turnOnAgent_btn.onPress=function()
{

// use getAgent() to find the started property
if(gShell.getAgent().started==true)
{

prompt_txt.text="Already running";
}
else
{

// attempt to start agent and report the results
var result=gShell.startAgent();
prompt_txt.text="Result: "+(result==true)?"success":"failure";

}
}

};

Parameters

None.

Returns

agentData Object; contains the following list of properties.

Element Description

id A unique numeric ID for the agent. This is the same value received as the
second parameter when Central calls the Agent.onActivate() event
handler.

name A string that specifies the name of the agent, which is the same as the
name declared for this agent in the product.xml file.
348 Chapter 10: API Reference

Console or Shell method; called by your pod or application to ascertain various properties of the
agent. Calling getAgent() returns an object with several properties. Considering that most of
these properties are hard-wired in your product.xml file, the most useful properties are started
and enabled.

Shell.getBounds()

Availability

Macromedia Central.

Usage

onActivate=function(shell)
{

// set a variable to reference the Shell
gShell=shell;

// trigger our own onResize to set the initial layout
this.onResize();

}

// define the onResize callback
onResize = function()
{

// ask shell to check app’s min & max size
var bounds = gShell.getBounds();

// if the bounds weren't returned, use the stage size
if (bounds == null)
{

bounds = {width: Stage.width, height: Stage.height};
}
// layout application items
centered_mc._x = bounds.width / 2;
centered_mc._y = bounds.height / 2;

};

Parameters

None.

src A string that specifies the fully qualified location of the SWF file
implementing the agent, which is the same as the location declared for
this agent in the product.xml file.

started A Boolean value that indicates whether this agent has been started (that
is, whether it’s currently running).

Element Description
Shell object 349

Returns

An ActionScript object with two properties: width and height. These match the new size of your
application.

width An integer that is the width of your application boundary.

height An integer that is the height of your application boundary.

Description

Shell method; called by the application to request the current application size. This is used rather
than using Stage.width and Stage.height directly, since there are nonapplication items (such
as the toolbar and prompt area) that take up stage space.

You should always call getBounds() to determine the application size and layout elements to fill
the bounds exactly. In conjunction with the onResize() event, you can make an application that
automatically changes the layout as the user resizes Central. Your stage needs to react to
onResize(), as this gets triggered when the user changes the window size or the zoom level in the
Window menu.

Shell.getNotices()

Availability

Macromedia Central.

Usage

arrayOfStructures=shellReference.getNotices()

Example

// This example creates notice when the user starts or stops your app.
// It uses getNotices() so that it can remove any matching notices.
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;
makeNonDuplicatedNotice("STARTUP");

};

onDeactivate=function()
{

makeNonDuplicatedNotice("SHUTDOWN");
};

makeNonDuplicatedNotice=function(theType){
// first see if there are any existing notices that match this type
var currentNotices=gShell.getNotices();
for(var i=0;i<currentNotices.length;i++)
{

var thisNotice=currentNotices[i];
if(thisNotice.appData==theType)
{

gShell.removeNotice(thisNotice.id);
break;
350 Chapter 10: API Reference

}
}

// make a new notice
var now=new Date();
var noticeData = new Object();
var initialData = theType;

// make part unique
if(theType=="STARTUP")
{

noticeData.name = "Start up time";
noticeData.description = "You started this app at "+now.toString();

}
else
{

noticeData.name = "Shut down time";
noticeData.description = "You closed this app at "+now.toString();

}

// set the rest of the properties
noticeData.alert = false;
noticeData.navigate = false;
noticeData.engageString = null;
noticeData.timeout = 0;

gShell.addNotice(noticeData, initialData);
};

Parameters

None.

Returns

An array of structures, each with the following properties:

Property Description

creationTime Date object containing the exact time the notice was created.

appID A unique numeric ID for the application that created the notice. This is the
same value received by the onActivate() event.

id A unique numeric ID for this notice. This is the same value returned when
you call addNotice().

initialData Can be any data type, passed as the second parameter when you issue
addNotice(). For details on how this lets you pack a notice with custom
data, see addNotice().

noticeData An object that contains general information about the notice, as
described next.
Shell object 351

noticeData An object containing several properties with detailed information about the
notice. The following are the available properties:

AgentManager, Console, or Shell method; called by an agent, pod, or application, respectively, to
get the currently active notices that your application created. The getNotices() method is one
of many methods that help you manage the notices you produce. You don’t want to inundate your
users with useless notices.

When you invoke the addNotice() method, an ID number is returned (that you can use when
call removeNotice()). When a notice is dismissed, the onNoticeEvent() callback triggers with
complete details. Finally, you can always find complete details regarding the existing notices any
time by using the getNotices() method.

Shell.getPods()

Availability

Macromedia Central.

Usage

podData=shellReference.getPods()

Property Description

id A number that represents the notice ID. This is the same ID returned
when the notice is first created using addNotice(). That is, you don’t set
this property when you create the notice.

name A string to be displayed in the notice’s title bar. If not specified, the default
value of name is:
application name Notice

description Longer string to be displayed in the notice’s body. The default is an empty
string.

timeout A number that specifies the seconds after which the notice should be
automatically dismissed. Set timeout to 0 to create a notice that never
times out.

alert A Boolean value that indicates whether the notice should be brought to
the user’s attention, rather than recorded in the Console.

engageString A short string; displayed on the engage button. If not specified, no
engage button appears.

navigate A Boolean value that indicates whether the shell should start the
appropriate application when the user selects engage.

unread A Boolean value that indicates whether the notice has been viewed by
the user.
352 Chapter 10: API Reference

Example

// displays a list of all available pods and adds an option to remove
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;
refreshListofAllPods();

myButton.onPress=function(){
gShell.removePod(myListComponent.getSelectedItem().data);
refreshListofAllPods();

};
};
refreshListofAllPods=function()
{

// clear the list component to be populated
myListComponent.removeAll();

// get an array of all the pods
var allPods=gShell.getPods();

// loop through the pods extracting their names and IDs
for (var i=0; i<allPods.length; i++)
{

var thisPod=allPods[i];
// add this pod's name and id to an MListBox component instance
myListComponent.addItem(thisPod.name, thisPod.id);

}
};

For additional examples of this method, see AgentManager.removePod().

Parameters

None.

Returns

An array of podData structures for all pods available to this application. The values for a podData
structure are set in the product.xml file or by a script calling addPod() or, in the case of appId
and id, by Central itself. For reference, the entire podData object documentation is shown below.

podData Pod data object containing several properties. This is the single parameter used any
time you create, destroy, or simply reference a pod. A podData object includes the following
properties:

Property Description

id A numeric unique ID returned when you call addPod(), so that you can
later reference the pod. Do not set this property when adding the pod.

name A string that specifies the name displayed on the pod itself. The name in
the pop-up menu at the top of the Console always matches your
application name. One application can have multiple pods, each with its
own name.
Shell object 353

AgentManager, Console, or Shell method; gets the list of all pods available to this application.
This includes pods listed in the product.xml file as well as any created by the addPod() method.
To get a list of only those pods currently arranged in the Console, use the getViewedPods()
method instead.

Realize that your application will only be listed once in the Console’s pod selection pop-up menu
(provided your application has at least one pod). For an application with more than one pod, the
user will see a secondary pop-up menu inside the pod (adjacent to the pod’s name). The
getPods() method returns an array of all the pods that will appear in that secondary pop-up
menu.

className A string that specifies the name of the class, as defined in the product.xml
file, that refers to a particular implementation of the pod. If your
application uses only one pod, you won’t need a pod className.
However, if you plan to have multiple pod instances based on the same
template, you should define both a podClass and your pod. You need to
define the podClass element separately. For example, suppose that you
describe the podClass tag as follows:
<podClass name="className" src="pod.swf"/>
You can then create instances of this podClass in one of two ways. First,
using the product.xml file, you can add the following pod tag:
<pod name="display name" className="className"/>

The second way to create an instance of this podClass is when creating a
new pod using addPod, as follows:
podData.name="display name";
podData.className="className";

Note: When using ActionScript 2.0, avoid .class; it is a reserved word.
Use className.

height An optional numeric parameter that you may declare to set the height, in
pixels, of the pod instance. The default height is 100. Pod widths are fixed
at 170 pixels.

src A string that specifies the source SWF file. The value is either absolute or
relative. (You can only set this value in the product.xml file’s pod tag or
podClass tag.)

enabled A Boolean value that specifies whether the pod has been added and is
available to the user. This value is only returned when calling getPods();
don’t set it in the object you pass to addPod().

appid A number set by Central to associate a pod with your application.

supportedTypes An array containing strings that identify the data types that this pod can
exchange through the Blast feature. (You can only set these types in the
product.xml file’s supportedTypes tag within the pod or podClass tags.)

initialData An optional property of any data type that you set at the time you trigger
addPod(). You can determine this value later when you reference a pod.

Property Description
354 Chapter 10: API Reference

For more information see getViewedPods(), addPod(), and viewPod().

Shell.getPreferences()

Availability

Macromedia Central.

Usage

prefObject=ref.getPreferences()

Example

// Displays as customized a message as possible at startup
onActivate=function(shell)
{

// set a variable to reference the Shell or Console
gShell=shell;

// get all the preferences
var all=gShell.getPreferences();

// prepare a field to populate
message_txt.text="";

// encourage them to enable background tasks, just in case
if(all.agentsEnabled==false)
{

message_txt.text+="Please enable background tasks."+newline;
}

// if we can’t find first or last name, use a generic message
if(all.userData.firstName==null || all.userData.lastName==null)
{

message_txt.text+="Welcome!"+newline;
}
else
{

message_txt.text+="Welcome "+all.userData.firstName+" "
+all.userData.lastName+"."+newline;

}

// if the locations value isn’t null
if(all.locations!=null)
{

// store the location profile from the appropriate index
var here=all.locations[all.currentLocationIndex];

// fashion a personalized message to display
message_txt.text+="You’re probably glad to be "

+here.label+ " in beautiful "+here.city+".";
}

};
Shell object 355

Returns

prefObject Object containing details from the user’s global preference settings. Depending on
how much access the user has given to your application, you can find the values for some or all of
the following properties.

Description

AgentManager, Console, or Shell method; called by the pod or application to get the general
Central preferences the user has exposed to your application. The value for the agentsEnabled
property matches the user’s setting for whether background tasks are allowed (set in the Advanced
Preferences dialog box). This value is always available. In fact, you’ll also see values for the
userData, locations, and currentLocationIndex properties (based on settings under the
Identity & Location Preferences dialog box). However, the values are all null by default and
won’t be available until the user has specifically allowed your application access to this data. It’s
easiest to visualize these properties and subproperties while viewing the Identity & Location
Preferences dialog box.

Shell.getSelectedItem()

Availability

Macromedia Central.

Usage

mySelectedItem=shellReference.getSelectedItem()

Example

// In order for the Blast menu to appear, you need
// at least one other application installed that accepts these data types.
// To make testing easy, just use the following code in the product.xml file

Element Description

userData A structure with three properties:
{firstName: xxx,
lastName: xxx,
email: xxx}

locations An array of structures, each with the following properties:
{label: xxx,
address1: xxx,
address2: xxx,
city: xxx,
state: xxx,
zipcode: xxx,
phone: xxx,
country: xxx,
latitude: xxx,
longitude: xxx,}

currentLocationIndex An index indicating the currently selected location (within the locations
array).

agentsEnabled A Boolean value that indicates whether agents are enabled.
356 Chapter 10: API Reference

//
<supportedTypes namespace="http://www.w3.org/2001/XMLSchema">

<type>any</type>
</supportedTypes>

// this example lets the user see the most recent data they Blasted
onActivate=function(shell)
{

// set a variable to reference the Shell
gShell=shell;

// set up the SelectedItem instances
var tint = new SelectedItem("http://www.mysite.com/schemas#", "aColor");
tint.name= "Red";
tint.value=0xFF0000;

var shape = new SelectedItem("http://www.mysite.com/schemas#", "aShape");
shape.name= "Square";
shape.sideCount=4;

// set button labels and store a reference to its SelectedItem object
sendTint_btn.label = tint.name;
sendTint_btn.data=tint;
sendTint_btn.onRelease = pickItem;

sendShape_btn.label = shape.name;
sendShape_btn.data=shape;
sendShape_btn.onRelese = pickItem;

// create a button just to see it work
review_btn.onRelease = function()
{

// grab the last selected item (in the first slot of the array)
var lastItem=gShell.getSelectedItem()[0];
message_txt.text="Last item selected was a " +

lastItem.type + " named " + lastItem.name;
};

};

// called by either MPushButton to display a message on screen
function pickItem(_pb)
{

var theItem=_pb.data;
gShell.setSelectedItem([item], "send "+item.name);

}

Parameters

None.

Returns

A SelectedItem object with the data from your current selection.
Shell object 357

Description

Shell method; called by your application to ascertain the most recent SelectedItem you created
using setSelectedItem(). You first create a SelectedItem instance of a certain data type,
populate it, and then call the setSelectedItem()method. From that point, the user sees the
Blast menu (provided at least one other installed application supports the contained data type).
Additionally, setSelectedItem() immediately sends the data using the Blast feature if the user
has enabled the Auto Blast option.

The getSelectedItem() method simply returns the most recent SelectedItem that you created.
A SelectedItem object isn’t generated automatically when the user simply selects something (for
instance, part of a text field). Rather, you not only need to define the data type being generated
(and any you intend the application to receive), you also have to deliberately create and populate
the SelectedItem instance.

For another Blast example, see “Application.onSelectedItem()” on page 179 and
“Shell.setSelectedItem()” on page 372.

For more information on the Blast feature, see Chapter 7, “Using the Blast Feature,” on page 105.

Shell.getViewedApplications()

Availability

Macromedia Central.

Usage

arrayOfApplicationRecs=shellReference.getViewedApplications()

Example

// this example stops users from launching multiple instances of your app
function onActivate(shell)
{

gShell=shell;

var activeApps = gShell.getViewedApplications();

if(activeApps.length>1)
{

myAlertDialog("You're already running this app in another window");
}

};

Parameters

None.
358 Chapter 10: API Reference

Returns

An array of applicationRecs structures that contain details about each instance of your
application. Each applicationRec structure has the following two properties:

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application to get the list of
all the shell instances running your application. Naturally, this method only returns information
about your applications. You can use the getViewedApplications() method to prevent users
from launching multiple instances of your application (as the example shows). Also, if you
develop a multi-window application, you can use the IDs gathered to set up unique
LocalConnection channels (although it’s often simpler to use the LCService object).

Shell.getViewedPods()

Availability

Macromedia Central.

Usage

arrayOfPodStructures=shellReference.getViewedPods()

Example

// displays a detailed list of currently viewed pods
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// trigger our refresh function
refreshListOfActivePods();

// give a button the ability to trigger our refresh function
myButton.onPress=function()
{

refreshListOfActivePods();
};

};
refreshListOfActivePods=function()
{

// clear the list component to be populated
myListComponent.removeAll();

// get an array of the currently viewed pods

Property Description

appID Number indicating the unique ID for your application. (All instances of
your application share this number.)

shellID Number indicating the unique ID for the particular shell running the
application. (You can think of this as an ID for the Central shell.)
Shell object 359

var activePods=gShell.getViewedPods();

// loop through the pods extracting some data for each one
for (var i=0; i<activePods.length; i++)
{

var thisPod=activePods[i];
var thisLabel=thisPod.podData.name+

 " (slot: "+thisPod.position+") "+
 ((thisPod.collapsed)?"is not open":"is open");

myListComponent.addItem(thisLabel);
}

};

Parameters

None.

Returns

An array of structures for each pod currently visible. The structures have the following properties:

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application to get the list of
this application’s currently viewed pods in the console. These are simply pods positioned in the
Console (regardless of whether the console happens to be open). To get a list of all initialized pods
initialized (that is, pods available to the user), regardless of whether they’ve been loaded in the
Console, see AgentManager.getPods() on page 154.

To determine whether the console is open, use AgentManager.isConsoleOpen().

The getViewedPods() method only returns pods for your application.

While you can use the removePod() method (given the id property inside the podData property)
this won’t just close the pod but will actually remove it from the pods available to the user. There
is no “close pod” method.

Property Description

viewerID Number indicating a unique ID for the pod instance. This is the same
number received as the third parameter in the pod’s onActivate()
handler.

position Number indicating the current ordinal position of the pod (not the pixel
location). Counting from the top, the uppermost pod is in position 0, then
position 1, and so on.

collapsed A Boolean value that indicates whether the pod is in the collapsed state.

podData A Pod data object as specified in the product.xml file or defined when you
call addPod(). For details on the properties contained in a podData object,
see getPods().
360 Chapter 10: API Reference

Shell.inLocalInternetCache()

Availability

Macromedia Central.

Usage

myBoolean=shellReference.inLocalInternetCache(url);

Example

// this example function loads images with the ultimate user control
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// trigger our homemade function
loadImage("background.jpg");

}

loadImage=function(theImage, override)
{

var imagePath="http://www.mysite.com/images/"+theImage;

// if the image is already present (or they’re overriding)
if(gShell.inLocalInternetCache(imagePath)==true || override==true)
{

//add the image and load it into a clip instance
error_txt.text="Loading "+theImage;
gShell.addToLocalInternetCache(imagePath);
clipInstance.loadMovie(imagePath);

}
else
{

// if they’re connected
if(gShell.isConnected()==true)
{

// get their approval by making the button set override to true
error_txt.text="Do you want to download "+theImage+"?";
okay_btn.onPress=function(){ loadImage(theImage,true) };

}
else
{

// if they’re not connected just let them try again
error_txt.text="Connect then press the okay button";
okay_btn.onPress=function(){ loadImage(theImage)};

}
}

};
Shell object 361

Parameters

url A string; fully qualified path that provides the location of the file to be added to the local
Internet cache.

Returns

A Boolean value; true if the URL is in the local Internet cache, false if not found.

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application to check if a
URL is in the local Internet cache. There are several strategies that might require this method.
Before requiring a user to endure a long download, you can first check if the file is available
locally, in which case, you get the user’s approval first. Also, if the user has indicated that they’re
not online and the file is not available locally, you can tell them they need to go online first.
Finally, the inLocalInternetCache() method provides an indirect way to confirm that attempts
to add files to the local Internet cache are successful, as described in the following best practice.

Note: Central considers file types of Portable Executable formats (DLL, EXE, OCX, and so on)
unsafe and will not add them to the local Internet cache.

It’s a good idea to always confirm the success of any addToLocalInternetCache() call by
immediately issuing the inLocalInternetCache() method with an appropriate follow-up action
if the method returns a value of false. This is because if the user’s 20 MB cache is exceeded and
they don’t allow an increase, then addToLocalInternetCache() effectively fails.

When caching files, the files are identified by their URL. However, Central does not distinguish
between separate hosts within the same domain. For example, Central considers the following
two URLs as the same:
http://www.mydomain.com/pub/myFile.swf
http://applications.mydomain.com/pub/myFile.swf

You can cache files from multiple hosts within a domain as long as the paths to the files are
unique across these hosts.

Shell.isConnected()

Availability

Macromedia Central.

Usage

myBoolean=shellReference.isConnected()

Example

// this example checks the connection state at startup
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;
362 Chapter 10: API Reference

// take current state and trigger onNetworkChange (where our code resides)
this.onNetworkChange(gShell.isConnected());

};

onNetworkChange=function(connected)
{

// save the connection state in a variable
gOnline=connected;

// display a visual online indicator
onlineGraphic_mc._visible=gOnline;

};

Parameters

None.

Returns

A Boolean value: true if the user is connected, false if offline.

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application to determine
current network status. You should consolidate all your code related to connectivity inside the
onNetworkChange() handler. Although Central triggers onNetworkChange() automatically, it
only does so when the connection status changes. Therefore, you need to use isConnected()
initially to bring your application in sync. The example shows how an application can trigger its
own onNetworkChange() handler (though usually Central does this). This way, all the code is
consolidated in one place. There’s no reason to repeatedly check isConnected() from multiple
places in your code.

Shell.isConsoleOpen()

Availability

Macromedia Central.

Usage

myBoolean=shellReference.isConsoleOpen()

Example

// this example adds a notice in order to open a closed Console at startup
onActivate=function(shell)
{

// set a variable to reference the AgentManager or Shell
gShell=shell;

if(gShell.isConsoleOpen()==false)
{

var noticeData = new Object();
noticeData.alert = true;
Shell object 363

noticeData.name = "Welcome to my app!";
noticeData.description = "You'll need the Console in this app";
gShell.addNotice(noticeData);

}
};

Parameters

None.

Returns

A Boolean value: true if the Console is currently open, false if it is closed.

Description

AgentManager or Shell method; called by an agent or an application to determine if the Console
is open. You might want to check whether the Console is open before you add or open new pods.
Additionally, because some commands cause the Console to open (for example, adding a notice
with its alert property set to true) you should first check whether the Console is open before
deciding your approach.

Unlike most methods available from agents, applications, and pods, the isConsoleOpen()
method is not available from a pod.

Shell.isPurchased()

Availability

Reserved.

Description

Reserved. Interface currently unavailable. Applications that implemented previous versions of this
method will continue to function: a call to isPurchased will return true for products previously
purchased.

Shell.newLocationDialog()

Availability

Macromedia Central.

Usage

shellReference.newLocationDialog([reqFields])

Example

// this prompts the user to create a new location with city and state required
onActivate=function(shell)
{

// set a variable to reference the Shell or Console
gShell=shell;

newLocation_btn.onPress=function()
364 Chapter 10: API Reference

{
gShell.newLocationDialog(["locCity", "locState"]);

}
};

Parameters

reqFields An array that contains strings for the fields that you want to designate as required.
The following table lists valid field names. It’s easiest to visualize these field names while viewing
the Identity & Location Preferences dialog box. (You can pass the literal string "noDialog" to
open the Identity & Location Preferences dialog box without creating a new location entry or
designating any required fields.)

Returns

Nothing.

Description

Shell or Console method; called by your application or pod to open the New Location dialog box
from the user’s preferences, so that they may create a new location and then edit the values. This is
the same as if the user selects New Location from the Location pop-up menu in the Identity &
Location section of the general preferences. The only difference here is that the user never sees the
rest of their preferences if they cancel the operation.

To make no fields required, don’t pass anything. To make the Identity & Location Preferences
dialog box appear without creating a new location entry or designating any required fields, pass
the literal string "noDialog".

Additionally, the newLocationDialog() method lets you designate that any or all fields are
required. The user sees a small page curl on the required fields, and red lines around any fields
they attempt to leave blank. (Be sure to pass an array containing strings that match the values
listed in the table.)

Field Description

"firstName" User’s first name

"lastName" User’s last name

"email" User’s e-mail address

"locAddress1" The first line of the user’s address

"locAddress2" The second line of the user’s address

"locCity" User’s city

"locState" User’s state

"locZip" User’s zip code

"locPhone" User’s phone number

"locLat" User’s latitude

"locLong" User’s longitude
Shell object 365

Shell.removeFromLocalInternetCache()

Availability

Macromedia Central.

Usage

shellReference.removeFromLocalInternetCache(URL)

Example

// this example attempts to free up space in the user’s cache when appropriate
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// add a new image to the local cache and load it into a clip
var imagePath="http://www.mysite.com/images/";
var theImage="photo.jpg";
gShell.addToLocalInternetCache(imagePath+theImage);
clipInstance.loadMovie(imagePath+theImage);

// if the new image isn’t present that means the cache is full
if(gShell.inLocalInternetCache(imagePath+theImage)==false)
{

// take a list of previously loaded images (could be dynamic)
myImageList=["big1.jpg", "big2.jpg", "big3.jpg"];

// and remove each one
for(var i=0;i<myImageList.length;i++)
{

gShell.removeFromLocalInternetCache(imagePath+myImageList[i]);
}

}
};

Parameters

url Fully qualified location of the file to be removed from the local Internet cache.

Returns

Nothing.

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application, respectively, to
remove a URL from the local Internet cache. Subsequent requests for that URL by any
application in Central will retrieve that data from the web rather than from the cache.
366 Chapter 10: API Reference

The file in question must be in the local Internet cache for this method to work. That means that
previously an application must have issued addToLocalInternetCache(). Another way to
remove a file from the local Internet cache is by setting an expiration date when invoking
addToLocalInternetCache(). Finally, the Shell.addToLocalInternetCache() method also
has an overwrite parameter which effectively removes a file by replacing it. For more information,
see addToLocalInternetCache().

Shell.removeNotice()

Availability

Macromedia Central.

Usage

myBoolean=shellReference.removeNotice(noticeID)

Example

// this example creates 3 notices and removes all 3 when any one is dismissed
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// create an array to store IDs for the notices we create
gPostedNotes=new Array();
//create a notice, set its name, and add it
var noticeData = new Object();
noticeData.engageString="Remove";
noticeData.name = "One";
gPostedNotes.push(gShell.addNotice(noticeData));
noticeData.name = "Two";
gPostedNotes.push(gShell.addNotice(noticeData))
noticeData.name = "Three";
gPostedNotes.push(gShell.addNotice(noticeData))

};

onNoticeEvent=function(event, noticeData, initialData)
{

// while gPostedNotes still has items remaining
while(gPostedNotes.length>0)
{

// pop one off and remove it
var thisNotice=gPostedNotes.pop();
gShell.removeNotice(thisNotice);

}
};
Shell object 367

Parameters

noticeID A number identifying the specific notice you want removed. You can use the number
returned when you create a notice using the addNotice() method. You can also use an id
property of any object within the array of notices objects returned from the getNotices()
method.

Returns

A Boolean value: true if the notice was removed, otherwise false.

Description

AgentManager, Console, or Shell method; called by an agent, pod, or application, respectively, to
remove a notice. You can only remove notices that your application created.

The most direct way to track IDs is to store them as you use addNotices(). However, this can be
difficult because users can dismiss notices (in which case you’ll have to trap the onNoticeEvent()
event) and they might leave the notices untouched when they quit Central (in which case you’ll
have to save a LocalShared object). Probably the easiest tracking method is to include initial data
in the second parameter of your addNotice() call. Use getNotices() and then step through
each item returned looking for a matching appData property.

A best practice is to minimize the total number of notices by first deleting old notices and then
replacing them with new ones containing up-to-date information. For an example of this practice,
see Shell.getNotices().

Shell.removePod()

Availability

Macromedia Central.

Usage

shellReference.removePod(id)

Example

// product.xml excerpt from within the <application> tag:
<podclass name="myRegularPod" src="pod.swf"/>
<podclass name="mySpecialPod" src="specialpod.swf"/>

<pod name="myDefaultPod" className="myRegularPod" />

// this example temporarily exposes a special pod for the user to open
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// give the user the opportunity to access the special pod class
gCounter=0;
my_btn.onPress=function()
{

368 Chapter 10: API Reference

gCounter++;
if(gCounter==3)
{

// add a new pod
var podData=new Object();
podData.name="special #3";
podData.className="mySpecialPod";
gSpecialPodID=gShell.addPod(podData);

}
if(gCounter==4)
{

// remove the special pod
gShell.removePod(gSpecialPodID);

}
}

};

Parameters

id A number returned when calling the addPod() method to create a pod. You can also use an
id property of any object within the array of objects returned to the getPods() method.

Returns

Nothing.

Description

AgentManager, Console, or Shell object method; called by an agent, pod, or application,
respectively, to remove a pod. Although this method removes from view any pods currently
arranged in the Console, it works differently from the way the user manually closes a pod. In the
case of removePod(), you aren’t removing an individual pod SWF instance, but rather removing
a pod instance once associated with your application. Naturally, if a matching pod is present in
the Console, it must be closed, but using removePod() means the user will no longer be able to
add that pod instance manually. There is no “close pod” method.

For more information about pods and pod classes see the entry for Console.addPod(). For more
information about the difference between application pods and currently viewed pods, see the
entries for Console.getPods() and Console.getViewedPods(), respectively.

Central automatically removes all pods associated with an application when a user uninstalls the
application.

Shell.requestPayment()

Availability

Reserved.
Shell object 369

Description

Reserved. Interface currently unavailable. Applications that implemented previous versions of this
method will continue to function as non-purchased applications: a call to requestPayment will
cause a notice to be displayed to the user, informing them that the feature is unavailable at this
time.

Shell.requestSizeChange()

Availability

Macromedia Central.

Usage

shellReference.requestSizeChange(width, height)

Parameters

width An integer; the width you’d like your application to be.

height An integer; the height you’d like your application to be.

Returns

Nothing.

Description

Shell method; called by your application to request a change to the size of the application
window. The shell might not be able to size the window as requested, for example if the user’s
monitor resolution is less than your request requires. Also, Central imposes a minimum screen
size of 500 x 300 pixels and a maximum size of 1600 x 1600 pixels.

Any window sizing (including requestSizeChange()) results in the onResize() event. A best
practice is to call Shell.getBounds() to determine the actual size ,and then lay out your
application elements to fill the bounds appropriately.

Shell.setProgress()

Availability

Macromedia Central.

Usage

shellReference.setProgress(percent)

Example

onActivate=function(shell){
// set a variable to reference the Shell
gShell=shell;

// indentify an image to load
var theFile="http://www.mysite.com/images/photo.jpg"

// check to see if we need to get it from the Internet
if(!gShell.inLocalInternetCache(theFile))
370 Chapter 10: API Reference

{

// tell the user what’s happening
gShell.setStatus("downloading image");
gShell.addToLocalInternetCache(theFile);

// set up the loader script (including setting the progress)
holderClip.onEnterFrame=function()
{

// only begin if the file is large
if(this.getBytesLoaded()>5)
{

var ratio=this.getBytesLoaded()/this.getBytesTotal();
gShell.setProgress(ratio*100);
if (ratio==1)
{

gShell.setProgress(0);
gShell.setStatus("");
this.onEnterFrame=null;

}
}

}
}

// begin loading
holderClip.loadMovie(theFile);

};

Parameters

percent A number that represents the percentage of progress. The percent parameter can
have the following values:

Returns

Nothing.

Description

Shell method; called by your application to display the built-in progress bar at the bottom of the
shell. Pass a percent parameter of -1 to show indeterminate time, which displays a barber pole
animation; pass any number between 1 and 100 to see that value as a percentage; pass 0 to hide
the progress bar (for instance, when you’re done with the progress bar). You also use the
setStatus() method to display a text message in the status bar. This is useful for labeling the
action that the progress bar is indicating.

Value Description

-1 Shows indeterminate progress (barber pole).

1-100 Shows the percentage of progress used for normal progress bar.

0 or over 100 Hides the bar.
Shell object 371

Shell.setSelectedItem()

Availability

Macromedia Central.

Usage

shellReference.setSelectedItem (data [,description])

Example

// RECEIVER APPLICATION:

// place the following in the product.xml file’s pod and/or application section
<supportedTypes namespace="http://www.w3.org/2001/XMLSchema">

<type>any</type>
</supportedTypes>

// this method will populate an MListBox component
onSelectedItem=function(data)
{

// prepare a List component to populate
myListComponent.removeAll();

for(var i=0;i<data.length;i++)
{

// make sure we treat the data as a selectedItem (not XML)
var thisItem=data[i].asSelectedItem();
myListComponent.addItem(thisItem.name, thisItem.description);

}
};

// SENDER APPLICATION:

// this part of the code shows how an application can prepare data to send
onActivate=function(shell){

// set a variable to reference the Shell or Console
gShell=shell;

send_btn.onPress=function()
{

// prepare the data as an array of two selectedItem items
var dataToSend=new Array();

var item1=new SelectedItem("http://www.mysite.com/ns#", "aType");
item1.name="name one";
item1.description="this is the description for item 1";
dataToSend.push(item1);

var item2=new SelectedItem("http://www.mysite.com/ns#", "aType");
item2.name="name two";
item2.description="this is the description for item 2";
dataToSend.push(item2);

// with the items prepared, set the data array and a prompt
372 Chapter 10: API Reference

gShell.setSelectedItem([item1, item2], "blast two items!");
};

};

Parameters

data An array of instances of the SelectedItem ActionScript object or an array of XML nodes.
The array may contain many instances of the same data type (for instance, a list of restaurants) or
many instances of different pieces of data (for instance, a restaurant, a movie, and a date). If any
of the elements do not have a data type associated with them, they are silently ignored.

description A string that you want Central to display in the status bar; this string describes
the selected data. This parameter is optional but highly recommended, and should be a concise
description of the data, since the description is displayed in the status bar next to the Blast menu
button.

Returns

Nothing.

Description

Shell method; called by your application to notify the shell that there is new data that the user has
entered or selected (or otherwise been made available), which can be pushed to other applications
using the Blast menu. If the user has set the Auto Blast option, the data is sent using the Blast
feature immediately after the setSelectedItem() method is called.

The application can call setSelectedItem() repeatedly to update the selected item and its
description, as needed.

Additionally, your application can call setSelectedItem(null) to clear the selected item.

After calling setSelectedItem(), Central populates the Blast menu with a list of applications
that support receiving any of the data types in the selected item’s array. Central also holds the data
so that you can retrieve it later by calling getSelectedItem(), even if the original SelectedItem
instances objects are deleted. (Don’t confuse this with the getSelectedItem() method that is
available to many components.)

Before you trigger setSelectedItem(), you always need to first format the data as SelectedItem
instances. Also, after you call setSelectedItem(), that data merely becomes available to other
applications, although it’s automatically sent if the Auto Blast option is enabled. The other
applications must support receiving the data type that you’re selecting, by specifying it in the
supportedTypes tag of their respective product.xml files. Finally, after the data is sent through
the Blast feature to another application, that application needs to have an onSelectedItem()
callback defined that handles the process of receiving the data. Inside that code, the other
application presumably does something interesting with the data, perhaps making a graph of the
numbers received.

For more information about SelectedItem objects, see “SelectedItem object” on page 335.

For more information about the onSelectedItem() event, see “Application.onSelectedItem()”
on page 179.
Shell object 373

For more information about the Blast feature and the supportedTypes tag, see Chapter 7,
“Using the Blast Feature,” on page 105.

Shell.setSelectedItem()

Availability

Macromedia Central.

Usage

shellReference.setSelectedItem (data [,description])

Example

// RECEIVER APPLICATION:

// place the following in the product.xml file’s pod and/or application section
<supportedTypes namespace="http://www.w3.org/2001/XMLSchema">

<type>any</type>
</supportedTypes>

// this method will populate an MListBox component
onSelectedItem=function(data)
{

// prepare a List component to populate
myListComponent.removeAll();

for(var i=0;i<data.length;i++)
{

// make sure we treat the data as a selectedItem (not XML)
var thisItem=data[i].asSelectedItem();
myListComponent.addItem(thisItem.name, thisItem.description);

}
};

// SENDER APPLICATION:

// this part of the code shows how an application can prepare data to send
onActivate=function(shell){

// set a variable to reference the Shell or Console
gShell=shell;

send_btn.onPress=function()
{

// prepare the data as an array of two selectedItem items
var dataToSend=new Array();

var item1=new SelectedItem("http://www.mysite.com/ns#", "aType");
item1.name="name one";
item1.description="this is the description for item 1";
dataToSend.push(item1);

var item2=new SelectedItem("http://www.mysite.com/ns#", "aType");
item2.name="name two";
374 Chapter 10: API Reference

item2.description="this is the description for item 2";
dataToSend.push(item2);

// with the items prepared, set the data array and a prompt
gShell.setSelectedItem([item1, item2], "blast two items!");

};
};

Parameters

data An array of instances of the SelectedItem ActionScript object or an array of XML nodes.
The array may contain many instances of the same data type (for instance, a list of restaurants) or
many instances of different pieces of data (for instance, a restaurant, a movie, and a date). If any
of the elements do not have a data type associated with them, they are silently ignored.

description A string that you want Central to display in the status bar; this string describes
the selected data. This parameter is optional but highly recommended, and should be a concise
description of the data, since the description is displayed in the status bar next to the Blast menu
button.

Returns

Nothing.

Description

Shell method; called by your application to notify the shell that there is new data that the user has
entered or selected (or otherwise been made available), which can be pushed to other applications
using the Blast menu. If the user has set the Auto Blast option, the data is sent using the Blast
feature immediately after the setSelectedItem() method is called.

The application can call setSelectedItem() repeatedly to update the selected item and its
description, as needed.

Additionally, your application can call setSelectedItem(null) to clear the selected item.

After calling setSelectedItem(), Central populates the Blast menu with a list of applications
that support receiving any of the data types in the selected item’s array. Central also holds the data
so that you can retrieve it later by calling getSelectedItem(), even if the original SelectedItem
instances objects are deleted. (Don’t confuse this with the getSelectedItem() method that is
available to many components.)

Before you trigger setSelectedItem(), you always need to first format the data as SelectedItem
instances. Also, after you call setSelectedItem(), that data merely becomes available to other
applications, although it’s automatically sent if the Auto Blast option is enabled. The other
applications must support receiving the data type that you’re selecting, by specifying it in the
supportedTypes tag of their respective product.xml files. Finally, after the data is sent through
the Blast feature to another application, that application needs to have an onSelectedItem()
callback defined that handles the process of receiving the data. Inside that code, the other
application presumably does something interesting with the data, perhaps making a graph of the
numbers received.

For more information about SelectedItem objects, see “SelectedItem object” on page 335.
Shell object 375

For more information about the onSelectedItem() event, see “Application.onSelectedItem()”
on page 179.

For more information about the Blast feature and the supportedTypes tag, see Chapter 7,
“Using the Blast Feature,” on page 105.

Shell.setStatus()

Availability

Macromedia Central.

Usage

shellReference.setStatus(message)

Example

// this example displays a progress bar while downloading a remote image
onActivate=function(shell){

// set a variable to reference the Shell
gShell=shell;

// indentify an image to load
var theFile="http://www.mysite.com/images/photo.jpg"

// check to see if we need to get it from the Internet
if(!gShell.inLocalInternetCache(theFile))
{

// tell the user what’s happening
gShell.setStatus("downloading image");
gShell.addToLocalInternetCache(theFile);

// set up the loader script (including setting the progress)
holderClip.onEnterFrame=function()
{

// only begin if the file is large
if(this.getBytesLoaded()>5)
{

var ratio=this.getBytesLoaded()/this.getBytesTotal();
gShell.setProgress(ratio*100);
if (ratio==1)
{

gShell.setProgress(0);
gShell.setStatus("");
this.onEnterFrame=null;

}
}

}
}

//begin loading
holderClip.loadMovie(theFile);

};
376 Chapter 10: API Reference

Parameters

message A string that specifies the message that is displayed in the Central status bar.

Returns

Nothing.

Description

Shell method; called by your application to set the current message in the status area of the shell
window. The status area is at the bottom left of the Central main window (but to the right of the
progress bar, if displayed). Use the shellReference.setStatus("") method to clear the status
area.

Shell.startAgent()

Availability

Macromedia Central.

Usage

shellReference.startAgent()

Example

// this example stops and starts the agent as connection status changes
onActivate=function(shell)
{

// set a variable to reference the Shell or Console
gShell=shell;

};

onNetworkChange=function(connected)
{

if(connected==false)
{

gShell.stopAgent();
}
else
{

gShell.startAgent();
}

};

Parameters

None.

Returns

A Boolean value: true if the agent was started, false if offline.
Shell object 377

Description

Console or Shell method; called by a pod or an application to start the agent associated with your
application as defined in the product.xml file. The product.xml file also lets you set your agent to
start automatically every time Central starts. Simply set the started attribute to true inside the
agent tag, as the following code shows:

<agent name="myAgent" src="agent.swf" started="true"/>

Most often, you use the startAgent() method after you issue a stopAgent() call.

Shell.stopAgent()

Availability

Macromedia Central.

Usage

myBoolean=shellReference.stopAgent()

Example

// this example stops and starts the agent as connection status changes
onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

};

onNetworkChange=function(connected)
{

if(connected==false)
{

gShell.stopAgent();
}
else
{

// this only works from an application or pod (not agent)
gShell.startAgent();

}
};

Parameters

None.

Returns

A Boolean value: true if the agent was successfully stopped, otherwise false.
378 Chapter 10: API Reference

Description

AgentManager, Console, or Shell method; called by an agent itself, a pod, or an application to
stop the agent SWF file (listed in the product.xml file). After it stops, the agent won’t start again
until you call startAgent() from an application or pod instance. In fact, agents do not start
automatically unless the product.xml file’s agent tag includes the attribute started="true".

Note: Your application can only have one agent.

A best practice is to keep as much code as possible in your agent. In such a case, the stopAgent()
method has questionable value. However, if your agent is primarily executing background tasks
using setInterval(), it might be easiest to first clear all the intervals and then simply call
stopAgent(). Additionally, if you design an application to use the agent only temporarily, then it
makes sense to use stopAgent() (and startAgent()).

Note: You don’t need to remove agents when the user uninstalls your application; Central does this
for you.

Shell.validateActivationKey()

Availability

Reserved.

Description

Reserved. Interface currently unavailable. Applications that implemented previous versions of this
method will continue to function: a call to validateActivationKey will validate activation keys
for products previously purchased.

Shell.viewPod()

Availability

Macromedia Central.

Usage

shellReference.viewPod(podID [, bForce])

Example

// This example adds a pod only after the user first runs the app.
// It requires you to define a PodClass named "post_install" in the product.xml

onActivate=function(shell)
{

// set a variable to reference the AgentManager, Shell, or Console
gShell=shell;

// check to see if the pod is installed
var foundID=null;
var allPods=gShell.getPods();
Shell object 379

for(var i=0;i<allPods.length;i++)
{

if(allPods[i].className=="post_install")
{

foundID=allPods[i].id;
gPodID=foundID;
break;

}
}

// create it if it wasn’t found
if(foundID==null)
{

var podData=new Object();
podData.name="Post Install Pod";
podData.className="post_install";
gPodID=gShell.addPod(podData);

}

// give the user a way to view the pod
podOpen_btn.onPress=function()
{

// should first use getViewedPods to avoid multiple views of this pod
//as is, this will view the pod added or found above
gShell.viewPod(gPodID);

};
};

Parameters

podID The number returned when calling addPod() to create a pod. You can also use an id
property of any object within the array of objects returned to the getPods() method.

bForce Optional parameter that forces the creation of a new pod viewer in the Console. The
bforce parameter is a Boolean value. If true (or omitted), viewPod() forces the creation of a
new pod viewer in the Console. If false, a new pod viewer is created only if the pod referred to
by podID is not already viewed in the Console (so no duplicate pods appear).

Returns

Nothing.

Description

AgentManager, Console, or Shell method; called by an agent, application, or pod, respectively, to
open a specific pod instance so that it becomes visible in the top slot of the Console. All of the
other visible pods are moved down in the console.
380 Chapter 10: API Reference

To call viewPod() you need a podID parameter. This means that you either must have used a
script to call addPod(), which returns an id, or used the getPods() method to get an array full
of structures (each one including an id). Using the getPods() method might seem to be
haphazard if your application has more than one pod, as you wouldn’t know which item in the
array was for which pod. However, the data in the array returned from getPods() includes other
details, including any initial data that you can specify in the product.xml file. It is probably most
intuitive to simply use viewPod() immediately after the creation of a pod by using the addPod()
method, as the example shows.

A best practice is to only call the viewPod() method in response to a direct user action. The user
should choose how to best populate the Console.

SOAPCall object

ActionScript Class Name mx.central.services.SOAPCall

The SOAPCall object is part of the mx.central.services package and is intended as an advanced
feature to be used with the WebService object (see “WebService object” on page 384).

When you create a new WebService object, it contains the methods corresponding to operations
in the WSDL URL you pass in. Behind the scenes, a SOAPCall object is created for each
operation in the WSDL as well. The SOAPCall is the descriptor of the operation, and as such
contains all the information about that particular operation (how the XML should look on the
wire, the operation style, and so on). It also provides control over certain behaviors. You can get
the SOAPCall for a given operation by using the getCall(operationName) function. There is a
single SOAPCall for each operation, shared by all active calls to that operation. Once you have
the SOAPCall, you can customize the descriptor, by doing the following:

• Turn on or off decoding of the XML response.
• Turn on or off the delay of converting SOAP arrays into ActionScript objects.
• Change the concurrency configuration for a given operation.
• Add a header to the SOAPCall object.

Method summary for the SOAPCall object

Property summary for the SOAPCall object

Method Description

None.

Property Description

SOAPCall.doDecoding Turns on or off decoding of the XML response.

SOAPCall.doLazyDecoding Turns on or off the delay of turning SOAP arrays into ActionScript
objects.
SOAPCall object 381

Event handler summary for the SOAPCall object

Constructor for the SOAPCall object

Availability

Macromedia Central

Description

The SOAPCall object is not constructed by the developer. Instead, when you call a method on a
WebService object, the WebService object returns a PendingCall object. To access the associated
SOAPCall object, use myPendingCall.myCall.

SOAPCall.doDecoding

Availability

Macromedia Central

Usage

SOAPCall.doDecoding

Description

Property; turns on or off decoding of the XML response. By default, the XML response is
converted (decoded) into ActionScript objects. If you want just the XML, you can set
SOAPCall.doDecoding = false.

SOAPCall.doLazyDecoding

Availability

Macromedia Central

Usage

SOAPCall.doLazyDecoding

Description

Property; turns on or off “lazy decoding” of arrays. By default, use a “lazy” decoding algorithm to
delay turning SOAP arrays into ActionScript objects until the last moment—this makes
operations return a lot faster when large data sets are returned. This means that any arrays you get
back from the remote end are ArrayProxy objects. Then, when you access a particular index
(foo[5]), that element is automatically decoded if necessary. This behavior can be turned off,
which causes all arrays to be fully decoded, by setting SOAPCall.doLazyDecoding = false.

Event handler Description

None.
382 Chapter 10: API Reference

String object

ActionScript Class Name String

Central supports the String.replace method as a convenience wrapper around
RegExp.replace. You provide as regular expressions the string to find and what it should be
replaced with as the two parameters, re and replacement, respectively. For more information
about regular expressions, see “RegExp object” on page 325.

Method summary for the String object

Flag summary for the String object

String.replace()

Availability

Macromedia Central.

Usage

String.replace(re, replacement)

Parameters

re String to replace, in the form of a regular expression.

replacement String that should replace the found string specified by the re parameter.

For more information about regular expressions, see “RegExp object” on page 325.

Returns

String; value of replacement string. The original String is left untouched.

Method Description

String.replace() Convenience wrapper around RegExp.replace.

Flag Meaning Description

g global Creates a new HTTP object with the given base URL.

i ignoreCase Performs a caseless match.

m multiline Interprets the caret character (^) and dollar sign ($) relative to embedded
new lines. (By default, they are relative to the beginning and end of the
string.)

s dotall Indicates that dot (.) matches new lines. (By default, it doesn’t match.)

x extended Ignores whitespace in the re parameter. Use \s instead (for readability).
String object 383

Description

String method; convenience wrapper around RegExp.replace. You provide as regular
expressions the string to find and what it should be replaced with as the two parameters, re and
replacement, respectively. This method returns a String. The value of which has the replacement
made. The original String is left untouched.

WebService object

ActionScript Class Name mx.central.services.WebService

The WebService object is part of the mx.services package and is intended to be used with the
following objects:

• Log object
• PendingCall object
• SOAPCall object

The WebServices object acts as a local reference to a remote web service. When you create a new
WebService object, the WSDL file that defines the web service gets downloaded, parsed, and
placed in the object. You can then call the methods of the web service directly on the WebService
object, and handle any callbacks from the web service. When the WSDL has been successfully
processed and the WebService object is ready, the onLoad() callback is invoked. If there is a
problem loading the WSDL, the onFault() callback is invoked.

When you call a method on a WebService object, the return value is a callback object. The object
type of the callback returned from all web service method invocations is PendingCall. These
objects are normally not constructed by developers, but instead are constructed automatically as a
result of the webServiceObject.webServiceMethodName() command. These objects are not
the result of the WebService call, which comes later. Instead, the PendingCall object represents
the call in progress. When the WebService operation completes (usually several seconds after a
method call is made), the various PendingCall data fields are filled in, and the onResult or
onFault callback you provide is called. For more information about the PendingCall object, see
“PendingCall object” on page 306.

The Player queues up any calls you make before the WSDL is parsed, and attempts to execute
them after parsing the WSDL. This is because the WSDL contains information that is necessary
to correctly encode and send a SOAP request. Function calls that you make after the WSDL has
been parsed do not need to be queued; they happen immediately. If a queued call doesn’t match
the name of any of the operations defined in the WSDL, Flash Player returns a fault to the
callback object you were given when you originally made the call.

Flash MX 2004 ActionScript Class Name mx.central.services.WebService

Method summary for the WebService object

Method Description

WebService.myMethodName() Invokes a specific web service operation defined by the WSDL.

WebService.getCall() Gets the SOAPCall for a given operation
384 Chapter 10: API Reference

Property summary for the WebService object

Event handler summary for the WebService object

Using the WebServices API

The WebServices API, included under the mx.central.services package, consists of the WebService
object, the Log object, and the PendingCall object.

Supported types

The WebService feature supports a subset of XML schema types, as defined in the following
tables.

Complex types and the SOAP-Encoded Array type are also supported, and these may be
composed of other complex types, arrays, or built-in XML schema types.

Numeric simple types

Property Description

None.

Event handler Description

WebService.onFault() Called when an error occurred during WSDL parsing.

WebService.onLoad() Called when the web service has successfully loaded and parsed its
WSDL file.

XML schema type ActionScript binding

decimal Number

integer Number

negativeInteger Number

nonNegativeInteger Number

positiveInteger Number

long Number

int Number

short Number

byte Number

unsignedLong Number

unsignedShort Number

unsignedInt Number

unsignedByte Number
WebService object 385

Date and Time Simple types

Name and String Simple types

Boolean type

Object types

Supported XML schema object elements

schema
complexType

complexContent
restriction

sequence | simpleContent
restriction

float Number

double Number

XML schema type ActionScript binding

date Date object

datetime Date object

duration Date object

gDay Date object

gMonth Date object

gMonthDay Date object

gYear Date object

gYearMonth Date object

time Date object

XML schema type ActionScript binding

string ActionScript String

normalizedString ActionScript String

QName mx.services.Qname object

XML schema type ActionScript binding

Boolean Boolean

XML schema type ActionScript binding

Any XML object

Complex Type ActionScript object composed of properties of any supported type

Array ActionScript array composed of any supported object or type

XML schema type ActionScript binding
386 Chapter 10: API Reference

element
complexType | simpleType

WebService security

The WebService API conforms to the Flash Player security model.

User authentication and authorization

The authentication and authorization rules are the same for the WebService API as they are for
any XML network operation from Flash. SOAP itself does not specify any means of
authentication and authorization. For example, when the underlying HTTP transport returns an
HTTP BASIC response in the HTTP Headers, the browser responds by presenting a dialog box
for the user and subsequently attaching the user’s input to the HTTP Headers in subsequent
messages. This mechanism exists at a level lower than SOAP, and is part of the Flash HTTP
authentication design.

Message integrity

Message-level security involves the encryption of the SOAP messages themselves, at a conceptual
layer above the network packets on which the SOAP messages are delivered.

Transport security

The underlying network transport for Flash Player SOAP web services is always HTTP POST.
Therefore, any means of security that can be applied at the Flash HTTP transport layer—such as
SSL—is supported through web services invocations from Flash. SSL/HTTPS provides the most
common form of transport security for SOAP messaging, and use of HTTP BASIC
authentication, coupled with SSL at the transport layer, is the most common form of security for
websites today.

Constructor for the WebService object

Availability

Macromedia Central

Usage

myWebServiceObject = new WebService(wsdlURI [, logObject]);

Parameters

wsdlURI URL of the web service WSDL file.

logObject Optional parameter that specifies the name of the Log object for this web service (see
“Log object” on page 300).

Returns

Nothing.
WebService object 387

Description

To create a WebService object, you call new WebService() and provide a WSDL URL. Flash
Player returns a WebService object. The WebService object constructor can optionally accept a
Log object and a proxy URL, as follows:
myWebServiceObject = new WebService(wsdlURI [, logObject]);

If you want, you can use two callbacks for the WebService object. Flash Player calls the
webServiceObject.onLoad(WSDLDocument) function when it finishes parsing the WSDL file
and the object is complete. This is a good place to put code that you want to execute only after
the WSDL file has been completely parsed. For example, you might choose to put your first web
service method call in this function.

Flash Player calls the webServiceObject.onFault(fault) function when an error occurs in
finding or parsing the WSDL file. This is a good place to put debugging code and code that tells
the user that the server is unavailable, that they should try again later, or similar information. For
more information, see the individual entries for these functions.

Invoking a web service operation

You invoke a web service operation as a method directly available on the web service. For
example, if your web service has the method getCompanyInfo(tickerSymbol), invoke the
method in the following manner:
myPendingCallObject = myWebServiceObject.getCompanyInfo(tickerSymbol);

In this example, the callback object is named myPendingCallObject. All method invocations are
asynchronous, and return a callback object of type PendingCall. (Asynchronous means that the
results of the web service call are not available immediately.)

When you make the following call:
x = stockService.getQuote("macr");

the object x is not the result of getQuote; it’s a PendingCall object. The actual results are only
available later (usually several seconds later), when the web service operation completes. Your
ActionScript code is notified by a call to the onResult callback function.

Handling the PendingCall object This callback object is a PendingCall object that you use for
handling the results and errors from the web service method that was called (see “PendingCall
object” on page 306). For example:
myPendingCallObject = myWebServiceObject.myMethodName(param1, ..., paramN);
myPendingCallObject.onResult = function(result)
{

outputField_txt.text = result
};
myPendingCallObject.onFault = function(fault)
{

debugField_txt.text = fault.faultCode + "," + fault.faultstring;

// add code to handle any faults, for example, by telling the
// user that the server isn’t available or to contact technical
// support

};
388 Chapter 10: API Reference

WebService.getCall()

Availability

Macromedia Central

Usage

mySOAPCallObj=myWebServiceObject.getCall(operationName);

Parameters

operationName The web service operation of the corresponding SOAPCall that you want to
retrieve.

Returns

A SOAPCall object.

Description

WebService method; contains the methods corresponding to operations in the WSDL URL that
you pass in, when you create a new WebService object. Behind the scenes, a SOAPCall object is
created for each operation in the WSDL as well. The SOAPCall is the descriptor of the operation,
and as such contains all the information about that particular operation (how the XML should
look on the wire, the operation style, and so on). It also provides control over certain behaviors.
You can get the SOAPCall for a given operation by using the getCall(operationName) method.
There is a single SOAPCall for each operation, shared by all active calls to that operation. After
you have the SOAPCall, you can change the operator descriptor by using the SOAPCall API. For
more information, see “SOAPCall object” on page 381.

Example

For an example on using this call, see “SOAPCall object” on page 381.

WebService.onFault()

Availability

Macromedia Central

Usage

myWebServiceObject.onFault=function(fault)
{

//handle the error
};

Parameters

fault Decoded ActionScript object version of the error with properties. If the error
information came from a server in the form of XML, the SOAPFault object is the decoded
ActionScript version of that XML.
WebService object 389

The type of error object returned to webservice.onFault() methods is a SOAPFault object. It
is not constructed directly by developers, but is returned as the result of a failure. This object is an
ActionScript mapping of the SOAP Fault XML type.

Returns

Nothing.

Description

WebService callback function; Flash Player calls this function when the new
WebService(wsdlURI) method has failed and returned an error. This can happen when the
WSDL file cannot be parsed or the file cannot be found. The fault parameter is an ActionScript
SOAPFault object.

Example

The following example handles any error returned from the creation of the WebService object:
myWebServiceObject.onFault = function(fault)
{

// captures the fault
debugOutputField_txt.text = fault.faultstring;

// add code to handle any faults, for example, by telling the
// user that the server isn’t available or to contact technical
// support

};

WebService.onLoad()

Availability

Macromedia Central

Usage

myWebServiceObject.onLoad=function(wsdlDocument)
{

//execute startup code
};

Parameters

wsdlDocument WSDL XML document.

SOAPFault property Description

faultcode String; the short standard QName that describes the error.

faultstring String; the human-readable description of the error.

detail String; the application-specific information associated with the error, such
as a stack trace or other information returned by the web service engine.

element XML; the XML object representing the XML version of the fault.

faultactor String; the source of the fault, optional if an intermediary is not involved.
390 Chapter 10: API Reference

Returns

Nothing.

Description

WebService callback function; Flash Player calls this callback function when the WebService
object has successfully loaded and parsed its WSDL file. Operations can be invoked in an
application before this event occurs, but when this happens they are queued internally and not
actually transmitted until the WSDL has loaded.

Example

The following example specifies the WSDL URL, creates a new web service object, and receives
the WSDL document after loading:
// specify the WSDL URL
var wsdlURI = "http://www.flash-db.com/services/ws/companyInfo.wsdl";

// creates a new web service object
stockService = new WebService(wsdlURI);

// receives the WSDL document after loading
stockService.onLoad = function(wsdlDocument)
{

// code to execute when the WSDL loading is complete and the
// object has been created

};

WebService.myMethodName()

Availability

Macromedia Central

Usage

callbackObj = myWebServiceObject.myMethodName(param1, ... paramN);

Parameters

Parameters required depend on the web service method being called.

Returns

callbackObj A PendingCall object to which you can attach a function for handling results
and errors on the invocation. For more information, see “PendingCall object” on page 306.

The callback invoked when the response comes back from the WebService method is
PendingCall.onResult() or PendingCall.onFault(). By uniquely identifying your callback
objects, you can manage multiple onResult callbacks, as the following example shows:
myWebService = new WebService("http://www.myCompany.com/myService.wsdl");
callback1 = myWebService.getWeather("02451");
callback1.onResult = function(result)
{

// do something
};
WebService object 391

callback2 = myWebService.getDetailedWeather("02451");
callback2.onResult = function(result)
{

// do something else
};

Description

Web service method; to invoke a web service operation, invoke it as a method directly available on
the web service. For example, if your web service has the method
getCompanyInfo(tickerSymbol), make the following call:
myCallbackObject.myservice.getCompanyInfo(tickerSymbol);

All invocations are asynchronous, and return a callback object, of the object type PendingCall.

XML object

ActionScript Class Name XML

Central extends the Flash XML object to assist in setting data types for XML tags that you want
to add to your chosen data schema. For more information see, “Using XML objects to send data”
on page 112.

Method summary for the XML object

Property summary for the XML object

Event handler summary for the XML object

XML.setType()

Availability

Macromedia Central.

Usage

function setType(namespace:String, element_type:String):Void definition
data.setType("http://www.myapp.com/my_Element#", "my_Element");

Parameters

namespace The xmlns attribute on the root node.

Method Description

XML.setType() Sets the data type for a custom XML element.

Property Description

None.

Event handler Description

None.
392 Chapter 10: API Reference

element_type The xsi:type attribute of the element.

Returns

Nothing.

Description

XML method; sets the data type for a custom XML element. Use this method to inform Central
of the data type of the XML element that you created with the call to
XML.createElement("source"). For more information see, “Using XML objects to send data”
on page 112.
XML object 393

394 Chapter 10: API Reference

CHAPTER 11
The product.xml File
The product.xml file is the XML descriptor file for your product. The product.xml file describes
your product, including all of the applications and their associated pods and agents. The
product.xml file must also include a product ID obtained when you register your product with
Macromedia

When you publish your application, post the product.xml file in the same domain as your
product files. During the installation process, Macromedia Central confirms that the files listed in
the product.xml file come from the same domain as the product.xml file itself. This helps ensure
that the product is what it claims to be and that no malicious programmer is using a legitimate
product.xml file to install illegitimate program files.

Macromedia recommends naming this file product.xml and placing it in the same directory as
your main application SWF file.

Sample product.xml file

The following is a simple example of a product.xml file:
<product

name="myProduct"
vendor="My Company"
created="12/21/02"
productID="XXXXX-XXXXX-XXXXX-XXXXX"
version="1"
price="Free"
license="http://www.mycompany.com/Centra1/myApp/eula.htm"
requireVersion="1.5"
category="Other">

<description>"Internet News Reader"</description>

<author
name="Joe Culayd"
info="http://www.mycompany.com"/>

<icon
src="http://www.mycompany.com/Centra1/myApp/1st_icon.swf"
size="40"/>
395

<application
name="1st_of_many"
src="http://www.mycompany.com/Centra1/myApp/1st_of_many.swf"
version="1"
help="http://www.mycompany.com/Centra1/myApp/app_help.html"
info="http://www.mycompany.com/Centra1/myApp/app_info.html"
background="#000000"
lang="en"
category="Other"
sendto="true"
hasPreferences="true">

<description>
"This is my story....."

</description>

<author
name="Joe Culayd"
info="http://www.mycompany.com"/>

<icon
src="http://www.mycompany.com/myIcons/app_icon.swf"
size="40"/>

<pod
name="myPod"
class=""
src="http://www.mycompany.com/Centra1/myApp/myPod.swf"
enabled="1"
height="90">

</pod>

<agent
name="myAgent"
src="http://www.mycompany.com/Centra1/myApp/myAgent.swf"
started="true">

</agent>
</application>

</product>

Note: Your product.xml file can include either absolute URLs or partial (relative) URLs when
specifying the various external files that your product comprises. Relative URLs resolve relative to the
location of the product.xml file.

Product.XML schema

In the following sections, the product.xml schema is described in the order it appears in a typical
product.xml file. A product tag can include many application and file tags. An application
tag can include multiple pod, icon, author, and file tags, but only one agent, initialData,
and supportedTypes tag.
396 Chapter 11: The product.xml File

product element

Description

Root tag; provides all of the elements and attributes that describe your product.

Usage

<product name="myApp"
created="04/30/2003"
version="1.5"
price="Free"
license="http://www.mycompany.com/Centra1/myApp/eula.htm"
requireVersion="1"
category="Personal Productivity"
vendor="Central Product Builder"
productID="XXXXX-XXXXX-XXXXX-XXXXX">

Attributes

name Required attribute. Your product name.

created Optional attribute. The date that your product was created, in the form of
mm/dd/yyyy. This attribute is required if you list your application in the Application Finder.

version Required attribute. Your product version.

price Required attribute. Your product price. If your product is free, set the price to 0.

license Optional attribute. You can specify a URL for your application’s end user license
agreement.

requireVersion Optional attribute. Required version of Central. Currently, this value should
be set to 1.5 if you require the user to have Central 1.5 installed.

category Required attribute. The category that your product will be listed under in the
Application Finder. Your application is published in the Application Finder under the values you
selected in the Application Publisher, and not necessarily in the value you provided in the
product.xml file. When you publish your application, the Macromedia Central Application
Publisher reads the product.xml file and use the corresponding default value in the category list.
You have the option of changing the value or adding more categories at this time. The following
strings are possible values for the category attribute and must be matched exactly so that the
Application Publisher can set the default category:

• Business & Professional
• Education
• Entertainment
• Games
• Health & Fitness
• Medical
• News & Weather
• Personal Productivity
product element 397

• Reference
• Shopping
• Travel
• Utilities
• Other
• Our Picks (reserved string for Macromedia, Incorporated use only)

When you publish your application, if there is not an exact match, you must select at least one
category or you will be unable to complete registration of your application.

vendor Optional attribute. Company name displayed in the Macromedia Central user
interface. This attribute is required if the product is not free.

productID Required attribute. Unique identification number for your product, received when
you registered your product with Macromedia.
398 Chapter 11: The product.xml File

author element

Description

Child element of the Application tag and the Product tag; string to describe the author of
either the product or one of its applications.

Usage

<author name="Esmeralda Ultima" info="http://authorHost.domain.com/"/>

Attributes

name Required attribute. Author’s name that appears in the application’s About dialog box and
in the Central Application Finder.

info Optional attribute. Absolute URL of the website associated with the author’s name.
author element 399

icon element

Description

Child element of the Application tag and/or the Product tag; filename that points to the icon
for either the product or one of its applications. An icon for an application should be a SWF file.
The recommended size is 40 pixels. For more information about providing icons for your
application, see Chapter 1, “Getting Started,” on page 11.

Usage

<icon
src="/myProductIcon.swf"
size="40"

/>

Attributes

src Required attribute. Location of your product icon file. May be represented as an absolute
URL, for example, http://productHost.domain.com/products/myProduct/icons/
myProductIcon.swf, or as a pathname relative to the location of the product.xml file, for example,
icons/myProductIcon.swf.

size Required attribute. Size of your icon in pixels, either the width or height dimension,
whichever is larger.
400 Chapter 11: The product.xml File

description element

Description

Child element of the product and application tags. Describes the application. The Description
string is displayed in the details view of the Application Finder. Only the first 128 characters
are displayed.

The basic rules for escaping XML apply to this string, but Central might not decode XML
entities. Avoid putting HTML code in your description.

Usage

<description>"Pick-a-Product helps you..."</description>
description element 401

file element

Description

Child element of the Application tag; filename that points to a supplemental file for
the application.

When caching files, the files are identified by their URL. Central (unlike previous versions) can
distinguish between separate hosts within the same domain. For example, Central no longer
considers the following two URLs the same:

• http://www.mydomain.com/pub/myFile.swf
• http://applications.mydomain.com/pub/myFile.swf

You can cache files from multiple hosts within a domain as long as the paths to the files are
unique across these hosts.

Note: The size limit of a file being cached is 20 MB. During your application's installation, if one or
more of the files are over 20 MB, the over-limit file is not downloaded and the Central user receives
an error indicating that some files were not downloaded.

Usage

<file src="http://www.mycompany.com/directoryName/myStrings.txt"/>

Attributes

src Required attribute. Location of a file.

Files specified with this tag are cached locally by Central when the application is installed. This
allows faster access to the file and allows the file to be accessed when Central is in offline mode.
The files being cached should be from the same domain as the application. To specify multiple
files to be cached, include multiple file tags.

Files are stored in the directory on the user’s computer named for the application’s domain.

Each file should be represented as an absolute URL, for example,
http://productHost.domain.com/products/myProduct/myStrings/myStrings.txt, or as a
pathname relative to the location of the product.xml file, for example, myStrings/myStrings.txt.
402 Chapter 11: The product.xml File

application element

Description

Child element of the product tag; a Flash SWF application file associated with the product
defined in the product.xml file. Each application residing with the product should have its own
application tag.

Usage

<application
name="My Product"
shortname="My Prod"
src="http://productHost.domain.com/products/myProduct/myApp/myApp.swf"
background="#CCCCFF"
help="http://host.domain.com/products/myProduct/myApp/Help/appHelp.html"
info="http://host.domain.com/products/myProduct/myApp/productInfo.html
lang="en"
version="1"
category=""
hasPreferences="true">

Attributes

name Required attribute. The application name.

shortName Optional attribute. The application’s short name to be displayed in the application
icon area of the Central application launcher.

src Required attribute. Location of the application. May be represented as an absolute URL, for
example, http://productHost.domain.com/products/myProduct/myApp/myApp.swf, or as a
pathname relative to the location of the product.xml file, for example, myApp/myApp.swf.

background Optional attribute. Application default background color, represented as a
hexidecimal value, such as #CCCCFF.

help Optional attribute. Location of the application’s help files, if any. May be represented as an
absolute URL, for example, http://productHost.domain.com/myProduct/myApp/appHelp.html,
or as a pathname relative to the location of the product.xml file, for example, myApp/
appHelp.html.

info Optional attribute. Location of summary information about the application. May be
represented as an absolute URL, for example, http://productHost.domain.com/myProduct/
myApp/appInfo.html, or as a pathname relative to the location of the product.xml file, for
example, myApp/appInfo.html.

lang Optional attribute. Language of the product. Currently, Central supports only the value
en, which indicates English.

version Required attribute. Your application version.

category Optional attribute. For a description of valid categories, see “product element”
on page 397.
application element 403

hasPreferences Optional attribute. Indicates whether Central should display the Application
Name > Preferences menu item. When the hasPreferences attribute is set to true, the
Preferences item appears in the Application Name menu. This enables the user to select the menu
item, which in turn causes Central to call the showPreferences() function in the application.
When the hasPreferences attribute is set to false, the default, the menu item does not appear
in the Application Name menu. For more information about implementing custom preferences in
an application, see Chapter 3, “Application-specific preferences,” on page 62.
404 Chapter 11: The product.xml File

initialData element

Description

Child element of the application, agent, and pod tags; user-defined content that Macromedia
Central places in an object that is passed as the initialData argument to the onActivate()
function in the application, agent, or pod. You set both the name and value of the attributes, in
the following form:
<initialData param1="value1" param2="value2" />

Macromedia Central translates the initialData tag into an ActionScript object and passes it to
the onActivate event handler.

The attributes can have any name you choose, and the values must be strings. To use a number,
pass it first as a string and then convert it to a number in ActionScript with the number()
method.

The following XML fragment shows how initialData values can be defined in the
product.xml file:
<agent name="BetaAppAgent" src="agent.swf">

<initialData foo="bar" black="white" good="evil" up="down"/>
</agent>

This XML code would result in an object being passed to the onActivate() function with the
following structure:
{

foo: "bar",
black: "white",
good: "evil",
up: "down",

}

Usage

<initialData param1="value1" param2="value2" />

Attributes

[param_n] Optional attributes. ActionScript parameters that Macromedia Central passes to the
application, agent, or pod’s onActivate event handler.
initialData element 405

podClass element

Description

Child element of the application tag; represents a pod SWF file that the application can use if
the application calls the shellRef.addPod() method. If the application does not dynamically
display pods, you can omit this element and use the pod tag alone. The pod tag causes a pod to be
displayed when the application is installed.

Usage

<podClass
name="myPod"
src="http://www.mycompany.com/Centra1/myApp/myPod.swf"
height="90"/>

Attributes

name Required attribute. Your pod class name.

src Required attribute. Location of your pod SWF file. May be represented as an absolute
URL, for example, http://productHost.domain.com/myProduct/myApp/myPods/myPod.swf, or
as a pathname relative to the location of the product.xml file, for example, myApp/myPods/
myPod.swf.

height Optional attribute. Indicates the height of the pod. Default pod height is 100 pixels.

For more information about pods, see Chapter 4, “Creating Pods,” on page 81.
406 Chapter 11: The product.xml File

pod element

Description

Child element of the application tag; specifies a pod to be displayed in the Console window
when the application is installed. Can be used with or without a podClass element.

Usage

<pod
name="myPod"
class=""
src="http://www.mycompany.com/Centra1/myApp/myPod.swf"
enabled="1"
height="90"
viewed="true">

</pod>

The most basic configuration of a pod does not require a class and can be used if you are not
dynamically creating any pods:
<pod

name="QuickSearch"
src="http://host.domain.com/myProduct/myApp/myPods/mySimplePod.swf" />

Attributes

name Required attribute. This is the name given to the created instance of the pod SWF file.

class Optional attribute. The name of the class defined in the podClass tag that this pod is an
instance of.

src Optional attribute. The location of your pod SWF file, used only when declaring a pod
that is not an instance of a pod class. May be represented as an absolute URL, for example, http:/
/productHost.domain.com/myProduct/myApp/myPods/myPod1.swf, or as a pathname relative
to the location of the product.xml file, for example, myApp/myPods/myPod1.swf.

enabled Optional attribute. Boolean value that causes your pod to be activated when
Macromedia Central starts. Acceptable values are true and false.

height Optional attribute. Indicates the height of the pod. The default pod height is
100 pixels.

viewed Optional attribute. Boolean value that indicates whether the pod will be visible (true)
when the application is installed, or not (false).

For more information about pods, see Chapter 4, “Creating Pods,” on page 81.
pod element 407

agent element

Description

Child element of the application tag; indicates whether an agent is being implemented with the
application.

Usage

The most basic configuration of an agent does not require a class:
<agent

name="agent_1"
src="http://host.domain.com/myProduct/myApp/myAgents/mySimpleAgent.swf"
started="true" />

Attributes

name Required attribute. Your agent instance name.

src Required attribute. The location of your agent. May be represented as an absolute URL, for
example, http://productHost.domain.com/myProduct/myApp/myAgents/myAgent1.swf, or as a
pathname relative to the location of the product.xml file, for example, myApp/myAgents/
myAgent1.swf.

started Optional attribute. Boolean value that, when true, causes your agent to start when
Macromedia Central starts. Acceptable values are true and false. The default is true. The
following conditions affect whether an agent starts:

• If the user disables background tasks in the Central Preferences, the agent does not start.
• If the application, pod, or agent stops the agent with the stopAgent() method, the agent does

not start until startAgent() is called, even if the application or Central restart.

For more information about agents, see Chapter 5, “Creating an Agent,” on page 93.
408 Chapter 11: The product.xml File

supportedTypes element

Description

Child element of the application and pod tags; indicates the namespace, schema, and
supported data types for the application or pod’s implementation of the Blast feature.

The Blast feature allows applications to send complex data types, such as addresses and telephone
numbers, to other applications. For more information about using the Blast feature, see
Chapter 7, “Using the Blast Feature,” on page 105.

Usage

<supportedTypes
namespace="http://www.myCo.com/CentralData#"
schema="http://www.myCo.com/CentralData.xsd">

<type>address</type>

</supportedTypes>

Attributes

namespace Required attribute. Unique namespace for your data type schema.

schema Required attribute. XML schema file used by the application to define the structure of
each of its data types.
supportedTypes element 409

type element

Description

Child element of the supportedType tag; indicates the types of data that the application can
receive from other applications that use the Blast feature for sharing data. To specify multiple data
types that are supported by the application, use multiple type tags within the supportedTypes
tag. Using the value any within the type tag indicates that your application can receive selected
item data for all data types defined in the schema indicated in the supportedTypes tag.

The Blast feature allows applications to send complex data types, such as addresses and telephone
numbers, to other applications. For more information, see Chapter 7, “Using the Blast Feature,”
on page 105.

Usage

<supportedTypes
namespace="http://www.myCo.com/CentralData#"
schema="http://www.myCo.com/CentralData.xsd">

<type>any</type>

</supportedTypes>

Detailed product.xml example

The following is a detailed example of the contents of the product.xml file:
<product

name="myProduct"
vendor="My Company"
created="12/21/02"
productID="XXXXX-XXXXX-XXXXX-XXXXX"
version="1"
price="Free"
requireVersion="1"
category="Other">

<description>"Internet News Reader"</description>

<author
name="Joe Culayd"
info="http://www.mycompany.com"/>

<icon
src="http://www.mycompany.com/Centra1/myApp/1st_icon.swf"
size="40"/>

<application
name="1st_of_many"
src="http://www.mycompany.com/Centra1/myApp/1st_of_many.swf"
version="1"
help="http://www.mycompany.com/Centra1/myApp/app_help.html"
info="http://www.mycompany.com/Centra1/myApp/app_info.html"
background="#000000"
410 Chapter 11: The product.xml File

lang="en"
category="Other"
sendto="true"
hasPreferences="true">

<description>
"This is my story....."

</description>

<file
src="http://www.mycompany.com/myStrings/myStrings.txt"/>

<author
name="Joe Culayd"
info="http://www.mycompany.com"/>

<icon
src="http://www.mycompany.com/myIcons/app_icon.swf"
size="40"/>

<supportedTypes
namespace="http://www.myCo.com/CentralData#"
schema="http://www.myCo.com/CentralData.xsd">

<type>address</type>
</supportedTypes>

<initialData/>

<podClass
name="myPod"
src="http://www.mycompany.com/Centra1/myApp/myPod.swf"
height="90"/>

<pod
name="myPod"
class=""
src="http://www.mycompany.com/Centra1/myApp/myPod.swf"
enabled="1""
height="90">

<file
src="http://www.mycompany.com/myStrings/myStrings.txt"/>

<initialData/>

<supportedTypes
namespace="http://www.myCo.com/CentralData#"
schema="http://www.myCo.com/CentralData.xsd">

<type>address</type>
</supportedTypes>

</pod>
Detailed product.xml example 411

<agent
name="myAgent"
src="http://www.mycompany.com/Centra1/myApp/myAgent.swf"
started="true">

<initialData/>

</agent>
</application>

</product>
412 Chapter 11: The product.xml File

INDEX
Symbols
_global variables 123, 137
_level0 identifiers 122, 136
_lockroot 36
_lockroot property 122, 136
_root 36, 123
_root identifiers 36, 122, 136

A
ActionScript 2.0 34
additional resources 9
agent files 27
Agent Manager 20, 22
Agent object 137
agent.onActivate, best practice 138, 174
agentData object 196, 348
AgentManager object 144
agents 23
appID

with Application.onActivate() 173
appID property

with AgentManager.getNotices() 153, 198, 351
with AgentManager.getViewedApplications() 159,

204, 359
application

files 26
finding 131
icons 26
installation badge 128
installing 16
parts, sharing data between 30

Application Finder 19, 131
Application object 171
Application SWF files 22
applicationRecs structures 159, 204, 359
applications, using qualified names 125

authentication 31
authoring templates 121
AuthoringExtensions.mxp 12

B
badge 16, 128
best practices 121, 162, 207, 362
Blast data, sending 335
Blast feature 30, 76, 209, 337, 358, 373, 375
Blast, SelectedItem 335

C
cache 29
caching 64
caching files 162, 207, 362, 402
Central

controller 19
environment, elements of 20
framework 19
new features in 1.5 34
Player 19
shell 20, 21

Central object 184
Central Product Setup Wizard 13, 129
Central.DataProviderClass object 218
Central.LCDataProvider object 271
class

attaching to a symbol 39
classes, intrinsic

installing 12
clearInterval() method 123
close 142, 177, 320
code, unused 125
coding conventions 122
collapsed property 160, 205, 360
communicating 47
413

components 125
installing 12
new names 35
version 2 34
viewing 13
with ActionScript 2.0 35

compression, turning off 125
configuration information 19
configuring Flash 121
connection objects 57
Console 20, 22

communication with a pod 90
Console object 186
context menus 75
Converting existing Flash applications 126
coordinates, passing 123
cross-domain access 77

D
data 47

caching locally 64
sharing 30

data access 28
data provider, specific to Central 271
data storage 28
data typing 19
deactivation 41
debug panel 13

installing 12
debugging 17
deploying files 121
detail 312, 390
dismissed notice 42
displaying pods 82
domains 77
downloading files to Central 30

E
element 312, 390
elements, Central environment 20
engage 142, 177, 320
event object 142, 177, 320
events 37

F
faultactor property 312, 390
faultcode property 312, 390
faultstring property 312, 390

file
caching size limit 402
download limit 402

file element
caching limit 402

file types
adding to local Internet cache 151, 193, 346
local Internet cache 162, 207, 362

FirstApp 13
Flash API Deltas 136
Flash Player version 11, 34
Flash XML schema APIs 30
font definitions, avoiding 125
fonts embedded in text 125
frame rate 121

G
Generate Size Report command 125
getBounds() command 44
getMaximumSize() function deprecated 36
getMinimumSize() function 42
gShell variable 174

H
hitTest() method 123
hosts within the same domain 151, 162, 194, 207,

346, 362
HTTPS 31

I
icons 26
id property 148, 155, 191, 200, 343, 353
initialData 142, 174, 178, 321
initialData property 147, 153, 189, 198, 342, 351
initialization calls 36
installation badge 13, 128
installing applications 16
intended audience 8
isConnected() 64

L
layout manager 45
LCDataProvider object 47
LCService object 47, 295
local caching 19

file size limit 402
local connection 30
local data 64
local data storage 29
414 Index

local Internet cache 29
local Internet files 29
local shared objects 29
LocalConnection objects 57
Log object 300

M
Macromedia Central environment 20
Macromedia Central, installing 11
Macromedia Exchange Manager, installing 12
Macromedia Flash Player

Download Center 12
Installation page 12

managing object 174
MD5 object 303
menus 75
minimum size 42
mouse 123
MovieClip object 305
mx.central.Application interface 37, 38
mxp file 12

N
network 19
network change 41
network connection, checking for 123
network status 64
notice event 42
noticeData property 153, 198, 351
noticeData structure 142, 146, 153, 177, 189, 198,

320, 341, 352
NoticeID property 147, 189, 342
Notices 30

O
objects

Log 300
PendingCall 306

onActivate() function 28, 39, 173, 184, 185
onDeactivate() function 41, 123, 124
onFault () function 390
onFault() function 332
onNetworkChange() function 41, 64, 174, 317
onNoticeEvent() function 42, 141, 176, 319
onNoticeEvent.event() function 142, 177, 320
onNoticeEvent.initialData 142, 178, 321
onResize() function 41, 45
onResult() function 31
onUninstall() function 43, 125

P
passing data 47
PendingCall object 306
pod

default height 149, 156, 191, 201, 344, 354
width 149, 156, 191, 201, 344, 354

Pod object 314
Pod.onActivate, best practice 317
podClass 149, 156, 191, 201, 344, 354
podClass tag 84
podData parameter 148, 155, 191, 200, 343, 353
podData property 160, 205, 360
PodData.height 149, 156, 191, 201, 344, 354
PodData.name 148, 155, 191, 200, 343, 353
podID property 149, 192, 344
pods

about 23
communication with Console 90
dimensions 81
displaying 82
files 27
getting properties 87
properties 83
removing 86
UI 23
working with functions 88

Portable Executable formats 151, 162, 193, 207,
346, 362

position property 160, 205, 360
preferences

data 43
working with 57

product
definition in Central 19
programmatic flow 28

product ID 16, 127
product.xml file 20, 128
product.xml tags, number allowed 396
product.xml, sample 395
products 20
programmatic flow 28
publishing an application 129
publishing tool, installing 12

R
RegExp object 325
regular expressions 325

in Central 31
native support 31
Index 415

remote data 30
remove 142, 177, 320
resize screen behavior 36
resizing

the applicaiton window 44
resizing the application window 41, 45
root of application window 36
routing of calls 19
RPC object 331

S
sample files 13
samples 36
SDK, installing 12
section2 326
section3 137
SelectedItem 30
SelectedItem object 335
services 68
setBaseTabIndex parameter 173
setInterval() method 123
setSize() method 45
setup wizard 129
sharing data

about 30
across applications 30

shell 20
callback object 173

shell API 44
shell instances 159, 204, 359
Shell object 338
shell size 44
shellID property 159, 173, 204, 359
showing pods 82
showPreferences() 43
shutting down an application 41
SOAP protocol 30
SOAP-based web services 68
SOAPCall object 381
SOAPFault 312, 390
sort, optimizing 235, 236, 292
SSL protocol 31
Stage.height property 122, 136
Stage.width property 122, 136
status information 46
storing data locally 29
String object 383
String.replace() method 383
SWD files 125
SWF files, optimizing 125

symbol
special 39

system requirements 11

T
testing 17
timeout 142, 177, 320
trace() commands 125
trace() statements 18, 137
typographical conventions 9

U
uninstalling an application 43
unsafe file types 151, 162, 193, 207, 346, 362
updates 30
updating the user 30
user interface design 122

V
viewerID property 160, 205, 360

W
web services 68
WebService object 30, 384
window 44
workflow 25
WSDL protocol 30

X
XML object 392
XML schema, Blast 30
XML-RPC file 334
XML-RPC web services 73
XML.setType() method 392
416 Index

	Contents
	About This Guide
	Intended audience
	Navigating the documentation map
	Additional resources
	Typographical conventions

	Getting Started
	System requirements
	Installing Macromedia Central
	Installing the Software Development Kit (SDK) and components
	The FirstApp application
	FirstApp files
	Re-creating the FirstApp application
	Creating a Macromedia Central application
	Obtaining a product ID
	Preparing the product.xml file
	Using the installation badge to install your application
	Testing and debugging your application within Central

	Adding the final touches
	Taking the next steps

	Understanding the Macromedia Central Environment
	About the Macromedia Central framework
	Elements of the Central environment
	The Central shell
	Application Drawer

	The Console
	The Agent Manager

	Elements of a Central application
	Application SWF files
	Pods
	Agents
	Notices

	The Macromedia Central product user experience
	Central development workflow
	Product files
	Pod files
	Agent files

	Programmatic flow of a typical product
	Typical data storage and access techniques
	Storing data locally
	Local shared objects
	Local file access
	Local Internet files

	Sharing data
	Sharing updates with the user
	Accessing remote data

	Building a Central Application
	Macromedia Central application development workflow
	Migrating from version 1.0
	Flash Player 7
	ActionScript 2.0
	Version 2 components
	Central 1.5 features
	Central 1.5 changes

	Initializing an application
	Implementing the application methods
	Implementing mx.central.Application
	Using the onActivate() function
	Using the onDeactivate() function
	Using the onNetworkChange() function
	Using the onResize() function
	Using the getMinimumSize() function
	Using the onNoticeEvent() function
	Using the showPreferences() function
	Using the onUninstall() function

	Using the shell API in an application
	Resizing the application window
	Writing a layout manager
	onResize() function example

	Displaying status information

	Passing data among product parts
	Communicating using the LCService object
	Defining the programming interface
	Creating asynchronous server-side functionality
	Creating asynchronous client-side functionality
	Looking at LCService in the StockWatcher application
	Using LCService objects in synchronous mode

	Communicating using the LCDataProvider object
	Creating the LCDataProvider object
	Creating the client side of the object

	Communicating among local connection objects

	Working with preferences
	Central preferences
	The General panel
	The Identity & Location panel
	The Advanced panel
	Accessing Central preferences from an application

	Application-specific preferences
	Showing and hiding preferences
	Remembering preferences

	Tracking network status
	Caching data locally
	Caching data dynamically from a URL
	Caching data by using the product.xml file
	Caching data with local shared objects

	Using web services
	Interacting with SOAP-based web services
	Handling SOAP web service errors
	Interacting with XML-RPC web services

	Using regular expressions
	Providing custom context menus
	Context menu example

	Using the Blast feature to share data across applications
	Accessing information across domains
	Usage scenarios
	Cross-domain access rules
	Cross-domain access settings
	The Cross-Domain dialog box
	Bypassing the Cross-Domain dialog box

	Creating Pods
	Creating a pod
	Building a pod
	Displaying a pod in Central
	Displaying a pod when its application is installed
	Displaying pods programmatically

	Initializing a pod

	Controlling pods
	Implementing the pod API
	The onActivate() function
	The onDeactivate() function
	The onNetworkChange() function
	The onNoticeEvent() function
	The getLastTabIndex() function

	Communicating between a pod and the Console

	Creating an Agent
	Designing an agent
	Creating an agent SWF file
	Starting an agent
	Stopping an agent
	Determining the status of an agent
	Implementing the agent API
	The onActivate() function
	The onDeactivate() function
	The onNetworkChange() function
	The onNoticeEvent() function
	The onUninstall() function

	Creating Notices
	Creating a notice
	The addNotice() function
	The removeNotice() function
	The getNotices() function

	Responding to notices
	Guidelines for using notices

	Using the Blast Feature
	Sending data from an application
	Receiving data
	Sending data from pods
	Registering supported data types in the product.xml file
	Defining your own data type schema
	Choosing a schema format
	Objects with automatic serialization and deserialization
	Using no schema
	ActionScript-to-XML type conversion
	Using XML objects to send data

	Defining your own data type schema
	Selected item storage
	Data type reference
	<email>
	<phone>
	<im>
	<link>
	<address>
	<contact>
	<coordinates>
	<business>
	<publication>

	Designing for Central Best Practices
	Configuring Macromedia Flash
	Application user interface
	Central coding conventions
	Optimizing SWF files
	Testing an application
	Converting existing Flash applications into Central applications

	Deploying Central Applications
	Deploying an application
	Obtaining a product ID
	Packaging the application
	Posting an application for download
	Deploying an installation badge
	Publishing an application with the Central Product Setup Wizard
	Central and the Application Finder

	API Reference
	Central API
	Flash API Deltas
	Agent object
	Method summary for the Agent object
	Property summary for the Agent object
	Event handler summary for the Agent object
	Agent.onActivate()
	Agent.onDeactivate()
	Agent.onNetworkChange()
	Agent.onNoticeEvent()
	Agent.onUninstall()

	AgentManager object
	Method summary for the AgentManager object
	Property summary for the AgentManager object
	Event handler summary for the AgentManager object
	AgentManager.addNotice()
	AgentManager.addPod()
	AgentManager.addToLocalInternetCache()
	AgentManager.getNotices()
	AgentManager.getPods()
	AgentManager.getPreferences()
	AgentManager.getViewedApplications()
	AgentManager.getViewedPods()
	AgentManager.inLocalInternetCache()
	AgentManager.isConnected()
	AgentManager.isConsoleOpen()
	AgentManager.removeFromLocalInternetCache()
	AgentManager.removeNotice()
	AgentManager.removePod()
	AgentManager.stopAgent()
	AgentManager.viewPod()

	Application object
	Method summary for the Application object
	Property summary for the Application object
	Event handler summary for the Application object
	Application.getMinimumSize()
	Application.onActivate()
	Application.onDeactivate()
	Application.onNetworkChange()
	Application.onNoticeEvent()
	Application.onPaymentResult()
	Application.onResize()
	Application.onSelectedItem()
	Application.onUninstall()
	Application.showPreferences()

	Central object
	Method summary for the Central object
	Property summary for the Central object
	Event handler summary for the Central object
	Central.initAgent()
	Central.initApplication()
	Central.initPod()

	Console object
	Method summary for the Console object
	Property summary for the Console object
	Event handler summary for the Console object
	Console.addNotice()
	Console.addPod()
	Console.addToLocalInternetCache()
	Console.editLocationDialog()
	Console.getAgent()
	Console.getHeight()
	Console.getNotices()
	Console.getPods()
	Console.getPreferences()
	Console.getViewedApplications()
	Console.getViewedPods()
	Console.inLocalInternetCache()
	Console.isConnected()
	Console.loadApplication()
	Console.newLocationDialog()
	Console.removeFromLocalInternetCache()
	Console.removeNotice()
	Console.removePod()
	Console.startAgent()
	Console.stopAgent()
	Console.viewPod()

	DataProviderClass object
	Extending the DataProviderClass object
	Method summary for the DataProviderClass object
	Events for the DataProviderClass object
	Constructor for the DataProviderClass object
	DataProviderClass.addItem()
	DataProviderClass.addItemAt()
	DataProviderClass.addItems()
	DataProviderClass.addItemsAt()
	DataProviderClass.addListener()
	DataProviderClass.getAllItems()
	DataProviderClass.getIndexByKey()
	DataProviderClass.getIndicesByKey()
	DataProviderClass.getItemAt()
	DataProviderClass.getItemByKey()
	DataProviderClass.getItemID()
	DataProviderClass.getItemsByKey()
	DataProviderClass.getLength()
	DataProviderClass.getSortState()
	DataProviderClass listener.modelChanged()
	DataProviderClass.removeAll()
	DataProviderClass.removeItemAt()
	DataProviderClass.removeListener()
	DataProviderClass.replaceAllItems()
	DataProviderClass.replaceItemAt()
	DataProviderClass.setItemByKey()
	DataProviderClass.sort()
	DataProviderClass.sortItemsBy()
	DataProviderClass.updateItem()
	DataProviderClass.updateItemByIndex()
	DataProviderClass.updateView()

	FileReference object
	Method summary for the FileReference object
	Property summary for the FileReference object
	Event handler summary for the FileReference object
	Initializing FileReference objects
	Uploading and Downloading files
	Reading and Writing files
	Constructor for the FileReference object
	FileReference.browse()
	FileReference.close()
	FileReference.copy()
	FileReference.copyIntoCache()
	FileReference.create()
	FileReference.creationDate
	FileReference.creator
	FileReference.deleteFile()
	FileReference.download()
	FileReference.exists()
	FileReference.getPosition()
	FileReference.locate()
	FileReference.modificationDate
	FileReference.move()
	FileReference.name
	FileReference listener.onDownloadFailed
	FileReference listener.onDownloadProgress
	FileReference listener.onDownloadStart
	FileReference listener.onDownloadSuccess
	FileReference listener.onFileError
	FileReference listener.onEndOfFile
	FileReference listener.onUploadFailed
	FileReference listener.onUploadProgress
	FileReference listener.onUploadStart
	FileReference listener.onUploadSuccess
	FileReference.open()
	FileReference.readBytes()
	FileReference.readFile()
	FileReference.readOnly
	FileReference.readString()
	FileReference.rename()
	FileReference.saveAs()
	FileReference.setPosition()
	FileReference.size
	FileReference.type
	FileReference.upload()
	FileReference.writeBytes()
	FileReference.writeString()

	FileReferenceList object
	Method summary for the FileReferenceList object
	Property summary for the FileReferenceList object
	Event handler summary for the FileReferenceList object
	Constructor for the FileReferenceList object
	FileReferenceList.browse()
	FileReferenceList.fileList

	LCDataProvider object
	Method summary for the LCDataProvider object
	Events for the LCDataProvider object
	LCDataProvider.addItem()
	LCDataProvider.addItemAt()
	LCDataProvider.addItems()
	LCDataProvider.addItemsAt()
	LCDataProvider.addListener()
	LCDataProvider.close()
	LCDataProvider.createClient()
	LCDataProvider.createServer()
	LCDataProvider.getAllItems()
	LCDataProvider.getIndexByKey()
	LCDataProvider.getIndicesByKey()
	LCDataProvider.getItemAt()
	LCDataProvider.getItemByKey()
	LCDataProvider.getItemID()
	LCDataProvider.getItemsByKey()
	LCDataProvider.getLength()
	LCDataProvider.getSortState()
	LCDataProvider listener.modelChanged()
	LCDataProvider.removeAll()
	LCDataProvider.removeItemAt()
	LCDataProvider.removeListener()
	LCDataProvider.replaceAllItems()
	LCDataProvider.replaceItemAt()
	LCDataProvider.setData()
	LCDataProvider.setItemByKey()
	LCDataProvider.sort()
	LCDataProvider.sortItemsBy()
	LCDataProvider.updateItem()
	LCDataProvider.updateItemByIndex()
	LCDataProvider.updateView()

	LCService object
	Method summary for the LCService object
	Property summary for the LCService object
	Event handler summary for the LCService object
	Interfaces
	Synchronous versus Asynchronous
	Security
	LCService.createClient()
	LCService.createServer()

	Log object
	Method summary for the Log object
	Property summary for the Log object
	Event handler summary for the Log object
	Constructor for the Log object
	Log.onLog()

	MD5 object
	Method summary for the MD5 object
	Property summary for the MD5 object
	Event handler summary for the MD5 object
	MD5.encode()

	MovieClip object
	Property summary for the MovieClip object
	MovieClip.toolTipText

	PendingCall object
	Method summary for the PendingCall object
	Property summary for the PendingCall object
	Event handler summary for the PendingCall object
	Constructor for the PendingCall object
	PendingCall.getOutputParameter()
	PendingCall.getOutputParameterByName()
	PendingCall.getOutputParameters()
	PendingCall.getOutputValue()
	PendingCall.getOutputValues()
	PendingCall.myCall
	PendingCall.onFault()
	PendingCall.onResult()
	PendingCall.request
	PendingCall.response

	Pod object
	Method summary for the Pod object
	Property summary for the Pod object
	Event handler summary for the Pod object
	Pod.getLastTabIndex()
	Pod.onActivate()
	Pod.onDeactivate()
	Pod.onNetworkChange()
	Pod.onNoticeEvent()
	Pod.onPositionChange()
	Pod.onSelectedItem()
	Pod.setBaseTabIndex()

	RegExp object
	Method summary for the RegExp object
	Property summary for the RegExp object
	Regular Expression Syntax
	Constructor for the RegExp object
	RegExp.dotall
	RegExp.exec()
	RegExp.extended
	RegExp.global
	RegExp.ignoreCase
	RegExp.lastIndex
	RegExp.match()
	RegExp.multiline
	RegExp.replace()
	RegExp.source
	RegExp.test()

	RPC object
	Method summary for the RPC object
	Property summary for the RPC object
	Event handler summary for the RPC object
	RPC.onFault()
	RPC.onResult()
	RPC.response

	RPCFactory object
	Method summary for the RPCFactory object
	Property summary for the RPCFactory object
	Event handler summary for the RPCFactory object
	Constructor for the RPCFactory object
	RPCFactory.createCall()

	SelectedItem object
	Constructor for the SelectedItem object

	Shell object
	Method summary for the Shell object
	Property summary for the Shell object
	Event handler summary for the Shell object
	Shell.addNotice()
	Shell.addPod()
	Shell.addToLocalInternetCache()
	Shell.editLocationDialog()
	Shell.getAgent()
	Shell.getBounds()
	Shell.getNotices()
	Shell.getPods()
	Shell.getPreferences()
	Shell.getSelectedItem()
	Shell.getViewedApplications()
	Shell.getViewedPods()
	Shell.inLocalInternetCache()
	Shell.isConnected()
	Shell.isConsoleOpen()
	Shell.isPurchased()
	Shell.newLocationDialog()
	Shell.removeFromLocalInternetCache()
	Shell.removeNotice()
	Shell.removePod()
	Shell.requestPayment()
	Shell.requestSizeChange()
	Shell.setProgress()
	Shell.setSelectedItem()
	Shell.setSelectedItem()
	Shell.setStatus()
	Shell.startAgent()
	Shell.stopAgent()
	Shell.validateActivationKey()
	Shell.viewPod()

	SOAPCall object
	Method summary for the SOAPCall object
	Property summary for the SOAPCall object
	Event handler summary for the SOAPCall object
	Constructor for the SOAPCall object
	SOAPCall.doDecoding
	SOAPCall.doLazyDecoding

	String object
	Method summary for the String object
	Flag summary for the String object
	String.replace()

	WebService object
	Method summary for the WebService object
	Property summary for the WebService object
	Event handler summary for the WebService object
	Using the WebServices API
	Supported types
	WebService security
	User authentication and authorization
	Message integrity

	Constructor for the WebService object
	WebService.getCall()
	WebService.onFault()
	WebService.onLoad()
	WebService.myMethodName()

	XML object
	Method summary for the XML object
	Property summary for the XML object
	Event handler summary for the XML object
	XML.setType()

	The product.xml File
	Sample product.xml file
	Product.XML schema
	product element
	author element
	icon element
	description element
	file element
	application element
	initialData element
	podClass element
	pod element
	agent element
	supportedTypes element
	type element
	Detailed product.xml example

	Index

