
MUST FDA copyright © ASC Associates 2008 V1.0

MUST: Full Database Auditing Features (FDA)
Supplementary documentation

Overview
FDA allows for full database auditing, and MUST will automatically write all the
required code and modify the structure of your database to accommodate this.

Presently this feature is only available at the time a database is created, and can not
be retro-fitted into existing databases.

This feature is not available in SQL server 2000. In SQL Server 2005 the feature will
automatically check and set field data type mappings of Memo to (VARCHAR(MAX))
and IMAGE to (VARBINARY(MAX)) data type to support the auditing.

Standard Auditing
The standard auditing in MUST when enabled adds 4 fields to each table (this is also
a prerequisite for FDA).

A_Tablename_LastUpdatedBy
A_Tablename_LastUpdatedOn
A_Tablename_CreatedBy
A_Tablename_CreatedOn

A combination of a trigger on the update event, and defaults in the fields stamp each
record when created or updated with the datetime and the users windows
credentials (using the SUSER_SNAME() function).

This is useful in giving an instant indication of who changed a record, but not what
was changed or deleted. FDA addresses these issues by introducing row level
auditing.

FDA
With FDA a second database is created containing a mirror image of all your desired
key tables (including full support for schemas).

When any row is inserted or deleted, it is written automatically to the image table,
and when a row is updated both the before image and after image of the rows are
written into the image table. In addition, the LastUpdatedBy and LastUpdatedOn
fields automatically change to match the user performing the operation. This
ensures changes can be easily identified against a particular user.

MUST FDA copyright © ASC Associates 2008 V1.0

Security

All users who will be able to modify data in the main database will also require to be
mapped into a security context in the auditing database, this is because if
impersonating another security context to add data to the auditing database were
used, the functions which identify the user would instead identify the impersonated
account.

The simplest approach to this would be to create an appropriate database role in the
auditing database which allows users to INSERT data, but not SELECT or any other
permissions on the data. Thus users can contribute to the audit trail but now view
data.

An example is show below:-

Firstly in the Auditing database create a new database role:-

The dbo schema should then be altered through the properties to grant permissions
on this role as shown below.

MUST FDA copyright © ASC Associates 2008 V1.0

Triggers
FDA generates a BEFORE UPDATE trigger for trapping updates, an AFTER INSERT
trigger for inserts and AFTER DELETE trigger for deletes.

Selecting Tables
FDA can be switched on for individual tables, thus allowing a balance to be struck
between audit detail and performance and storage.

Example
The following example illustrates how to configure FDA for the Northwind database.

Start with the options menu shown below; enable full database auditing before
analysing your database.

The next step is to create the auditing database, and provide a name for the
database using the “Create Audit Database” button.

MUST FDA copyright © ASC Associates 2008 V1.0

Now return to the main database menu and proceed as normal to select the
database server details for upsizing, select your Access database and then analyse
your database.

Once completed, return to the options menu and use the select tables to audit
button to select the target tables.

MUST FDA copyright © ASC Associates 2008 V1.0

Now upsize your database, it is only when you add the relationships that the auditing
triggers will be generated.

MUST FDA copyright © ASC Associates 2008 V1.0

Then return to the ‘Create Auditing Tables’ area and generate the auditing database.

There is also an option to generate a script file for creating the auditing tables.

Each table in your main database will have three auditing triggers.

And each table in the auditing database has a single trigger.

MUST FDA copyright © ASC Associates 2008 V1.0

Verifying Security
Security as ever is very important, and the following steps are aimed at assisting a
developer in going through this process. These screen shorts are from Vista.

Using the control panel we create another windows account.

In your database create a database role.

MUST FDA copyright © ASC Associates 2008 V1.0

Then on the dbo schema, grant Select, Insert, Update and Delete to the TestRole.

This grants this database role the ability to update data.

MUST FDA copyright © ASC Associates 2008 V1.0

Next we create the SQL Server Login and assign the user to our test role.

This user now also requires permissions in the Auditing database using the
UserAuditing role which allows them only to contribute to data in the Audit
database.

MUST FDA copyright © ASC Associates 2008 V1.0

Audit Table Data

Show above is sample data, each row has an Action_TableName field to indicate
what the action was and details of who changed the record and when it was
changed.

When a user inserted a record it is flagged I.
When the user edited the data we have a B (before image) and A (After Image).
When the user deletes the data we have a D record.

Note that the A_TablenameLastUpdatedBy always gets re-set to the current user
who made the changes, even on the before image of the data; this allows the
audited records to be easily located.

When investigating and testing the auditing a Windows 2003 or similar server is
required, it appears that on Vista the authentication when switching between
accounts does not behave always as anticipated.

MUST FDA copyright © ASC Associates 2008 V1.0

Design Changes to Table Structure
Once auditing tables have been constructed, care must be taken when adding new
fields to the databases, such that new fields are first added into the audit database
and then into the live database.

When changing the fields the field order between tables in both databases must be
preserved.

In particular, new fields MUST BE ADDED BEFORE THE LAST FIELDS AT THE BOTTOM
OF EACH TABLE.

You will notice that the auditing tables do not have a primary key. If required you
could add a key which incorporates the datetime fields.

Do NOT add a column with an IDENTITY property as a primary key, because due to a
restriction in Access if the real table has an IDENTITY column, then the value
returned to Access on linked tables, will be the value from the auditing table.
Unfortunately Access appears to use @@IDENTITY and not SCOPE_IDENTITY() to
return the key value.

MUST FDA copyright © ASC Associates 2008 V1.0

Triggers, Behind the Scenes
In the auditing database the following is an example of the trigger which is added to
each auditing table, to identify who made the changes to the data.

CREATE TRIGGER [dbo].[TR_Customers_U]
ON [dbo].[Customers]
FOR INSERT AS
UPDATE [Customers]
 SET [A_CustomersUpdatedBy] = SUSER_SNAME(), [A_CustomersUpdatedOn] = GetDate()
FROM [Customers] s
INNER JOIN [INSERTED] i
ON s.[CustomerID] = i.[CustomerID]
AND s.[TS_Customers] = i.[TS_Customers]

In the main database each table contains three triggers. The first logs updates.

CREATE TRIGGER [dbo].[TRAuditCustomers] ON [dbo].[Customers]
FOR UPDATE
AS
UPDATE [Customers]
SET [A_CustomersLastUpdatedBy] = SUSER_SNAME(),
[A_CustomersLastUpdatedOn] = GetDate()
FROM [Customers] s INNER JOIN [INSERTED] i
ON s.[CustomerID] = i.[CustomerID]

INSERT INTO Nowthwind_Audit.dbo.[Customers]
SELECT *,'B' FROM DELETED
INSERT INTO Nowthwind_Audit.dbo.[Customers]
SELECT *,'A' FROM INSERTED

CREATE TRIGGER [dbo].[TRAuditCustomers_D] ON [dbo].[Customers]
AFTER DELETE
AS
INSERT INTO Nowthwind_Audit.dbo.[Customers] SELECT *,'D' FROM DELETED

CREATE TRIGGER [dbo].[TRAuditCustomers_I] ON [dbo].[Customers]
AFTER INSERT
AS
INSERT INTO Nowthwind_Audit.dbo.[Customers] SELECT *,'I' FROM INSERTED

